TestRunNewCMake

Intel Pentium Gold G6400 testing with a ASRock H510M-HDV/M.2 SE (P1.60 BIOS) and Intel UHD 610 CML GT1 3GB on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2311037-HERT-H510G6431
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Intel UHD 610 CML GT1
October 24 2023
  4 Days, 16 Hours, 36 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


TestRunNewCMakeOpenBenchmarking.orgPhoronix Test SuiteIntel Pentium Gold G6400 @ 4.00GHz (2 Cores / 4 Threads)ASRock H510M-HDV/M.2 SE (P1.60 BIOS)Intel Comet Lake PCH3584MB1000GB Western Digital WDS100T2B0AIntel UHD 610 CML GT1 3GB (1050MHz)Realtek ALC897G185BGEL01Realtek RTL8111/8168/8411Ubuntu 20.045.15.0-86-generic (x86_64)GNOME Shell 3.36.9X Server 1.20.134.6 Mesa 21.2.61.2.182GCC 9.4.0ext41368x768ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionTestRunNewCMake BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-9-9QDOt0/gcc-9-9.4.0/debian/tmp-nvptx/usr,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xf8 - Thermald 1.9.1 - Python 3.8.10- gather_data_sampling: Not affected + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

TestRunNewCMakewhisper-cpp: ggml-medium.en - 2016 State of the Unionwhisper-cpp: ggml-small.en - 2016 State of the Unionscikit-learn: Sparse Rand Projections / 100 Iterationswhisper-cpp: ggml-base.en - 2016 State of the Unioncaffe: GoogleNet - CPU - 1000scikit-learn: GLMscikit-learn: Lassoscikit-learn: SAGAplaidml: No - Inference - VGG16 - CPUscikit-learn: Kernel PCA Solvers / Time vs. N Componentsscikit-learn: TSNE MNIST Datasetcaffe: AlexNet - CPU - 1000plaidml: No - Inference - ResNet 50 - CPUmnn: inception-v3mnn: mobilenet-v1-1.0mnn: MobileNetV2_224mnn: SqueezeNetV1.0mnn: resnet-v2-50mnn: squeezenetv1.1mnn: mobilenetV3mnn: nasnetscikit-learn: Covertype Dataset Benchmarknumenta-nab: KNN CADscikit-learn: Plot Lasso Pathscikit-learn: Kernel PCA Solvers / Time vs. N Samplesscikit-learn: LocalOutlierFactorscikit-learn: Hist Gradient Boosting Threadingncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelnumenta-nab: Earthgecko Skylinescikit-learn: Plot Singular Value Decompositiononnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelcaffe: GoogleNet - CPU - 200scikit-learn: Plot Polynomial Kernel Approximationtnn: CPU - DenseNetscikit-learn: Plot Hierarchicallczero: BLASonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardscikit-learn: Plot Neighborsscikit-learn: Plot OMP vs. LARSonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardscikit-learn: SGD Regressiononednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUscikit-learn: Feature Expansionsscikit-learn: Hist Gradient Boostingscikit-learn: Hist Gradient Boosting Higgs Bosonscikit-learn: Treecaffe: GoogleNet - CPU - 100numpy: caffe: AlexNet - CPU - 200scikit-learn: Sample Without Replacementonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUnumenta-nab: Bayesian Changepointscikit-learn: Sparsifyscikit-learn: Hist Gradient Boosting Adultnumenta-nab: Contextual Anomaly Detector OSEscikit-learn: Plot Wardmlpack: scikit_icascikit-learn: MNIST Datasetscikit-learn: Plot Incremental PCAscikit-learn: Text Vectorizersonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardcaffe: AlexNet - CPU - 100onnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelscikit-learn: 20 Newsgroups / Logistic Regressionopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUnumenta-nab: Relative Entropyopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUtensorflow-lite: Mobilenet Quanttensorflow-lite: Inception V4tensorflow-lite: Inception ResNet V2openvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUtensorflow-lite: NASNet Mobileopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUtensorflow-lite: Mobilenet Floattensorflow-lite: SqueezeNetopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUscikit-learn: Hist Gradient Boosting Categorical Onlyrbenchmark: numenta-nab: Windowed Gaussianmlpack: scikit_svmrnnoise: tnn: CPU - MobileNet v2tnn: CPU - SqueezeNet v1.1onednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUtnn: CPU - SqueezeNet v2onednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUIntel UHD 610 CML GT141069.32311708.1743104.8493200.8515021427901129.1261084.1381078.4861.59327.831807.6519864402.40158.58520.61313.32322.634119.02212.2343.86130.010584.048726.697476.230463.431456.448445.69810.32922.0823.6138.5993.72125.6537.8846.11269.8255.092.4529.1917.458.6315.1520.7775.7510.31922.2723.1438.6493.85125.8737.8946.04268.6854.882.4629.2117.428.6515.0920.6975.8013223.70.0793033534.684357.6611090.1310.933197851.9181.17517135.2117.64505429063301.8985394.682278.83413735.975627.8791112.5278.91625267.817253.19325.730038.8853228.71542198.742203.142196.3211.252199.375194.06948.190214399290.97197396146.72321214.821213.821191.3168.694107.140104.542139.35394.532118.3187.87985.50281.3859433.670.10600398849914.9941.09291750.7261.33205410.7462.43458461.3002.1678333.947829.452611809.470.17112.3918.8977096.619610.352231.294031.953661.6003863.390.5268.527810.072.47576680426984397245926.632.15941.812.12119.4716.74238.388.3941500.3125.6315.91158.6812.6022665.531464.659.6333.53120.8716.54128.2915.5818.84106.1138.5051.9338.9251.363.96504.021.531300.4727.7230.357234.11427.7527.004374.720335.25878.287519.792837.761312.277838.01615.9094760.253248.778875.16392.420426.9529OpenBenchmarking.org

Whisper.cpp

Whisper.cpp is a port of OpenAI's Whisper model in C/C++. Whisper.cpp is developed by Georgi Gerganov for transcribing WAV audio files to text / speech recognition. Whisper.cpp supports ARM NEON, x86 AVX, and other advanced CPU features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-medium.en - Input: 2016 State of the UnionIntel UHD 610 CML GT19K18K27K36K45KSE +/- 369.73, N = 341069.321. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-small.en - Input: 2016 State of the UnionIntel UHD 610 CML GT13K6K9K12K15KSE +/- 11.17, N = 311708.171. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: SGDOneClassSVM

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Isolation Forest

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 IterationsIntel UHD 610 CML GT17001400210028003500SE +/- 2.11, N = 33104.851. (F9X) gfortran options: -O0

Benchmark: Plot Fast KMeans

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Whisper.cpp

Whisper.cpp is a port of OpenAI's Whisper model in C/C++. Whisper.cpp is developed by Georgi Gerganov for transcribing WAV audio files to text / speech recognition. Whisper.cpp supports ARM NEON, x86 AVX, and other advanced CPU features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-base.en - Input: 2016 State of the UnionIntel UHD 610 CML GT17001400210028003500SE +/- 0.85, N = 33200.851. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 1000Intel UHD 610 CML GT1500K1000K1500K2000K2500KSE +/- 68.07, N = 321427901. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMIntel UHD 610 CML GT12004006008001000SE +/- 2.76, N = 31129.131. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LassoIntel UHD 610 CML GT12004006008001000SE +/- 0.75, N = 31084.141. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAIntel UHD 610 CML GT12004006008001000SE +/- 0.44, N = 31078.491. (F9X) gfortran options: -O0

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUIntel UHD 610 CML GT10.35780.71561.07341.43121.789SE +/- 0.02, N = 31.59

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N ComponentsIntel UHD 610 CML GT170140210280350SE +/- 4.18, N = 9327.831. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST DatasetIntel UHD 610 CML GT12004006008001000SE +/- 1.86, N = 3807.651. (F9X) gfortran options: -O0

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1000Intel UHD 610 CML GT1200K400K600K800K1000KSE +/- 69.96, N = 39864401. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUIntel UHD 610 CML GT10.541.081.622.162.7SE +/- 0.00, N = 32.40

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. This MNN test profile is building the OpenMP / CPU threaded version for processor benchmarking and not any GPU-accelerated test. MNN does allow making use of AVX-512 extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: inception-v3Intel UHD 610 CML GT14080120160200SE +/- 0.13, N = 3158.59MIN: 156.93 / MAX: 210.331. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenet-v1-1.0Intel UHD 610 CML GT1510152025SE +/- 0.03, N = 320.61MIN: 20.32 / MAX: 34.591. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: MobileNetV2_224Intel UHD 610 CML GT13691215SE +/- 0.01, N = 313.32MIN: 13.14 / MAX: 27.141. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Intel UHD 610 CML GT1510152025SE +/- 0.01, N = 322.63MIN: 22.38 / MAX: 36.291. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: resnet-v2-50Intel UHD 610 CML GT1306090120150SE +/- 0.09, N = 3119.02MIN: 117.79 / MAX: 154.341. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: squeezenetv1.1Intel UHD 610 CML GT13691215SE +/- 0.02, N = 312.23MIN: 12.06 / MAX: 26.181. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenetV3Intel UHD 610 CML GT10.86871.73742.60613.47484.3435SE +/- 0.004, N = 33.861MIN: 3.78 / MAX: 17.861. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: nasnetIntel UHD 610 CML GT1714212835SE +/- 0.07, N = 330.01MIN: 29.6 / MAX: 49.621. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset BenchmarkIntel UHD 610 CML GT1130260390520650SE +/- 1.24, N = 3584.051. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADIntel UHD 610 CML GT1160320480640800SE +/- 0.28, N = 3726.70

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso PathIntel UHD 610 CML GT1100200300400500SE +/- 0.25, N = 3476.231. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N SamplesIntel UHD 610 CML GT1100200300400500SE +/- 0.23, N = 3463.431. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorIntel UHD 610 CML GT1100200300400500SE +/- 0.41, N = 3456.451. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting ThreadingIntel UHD 610 CML GT1100200300400500SE +/- 3.29, N = 3445.701. (F9X) gfortran options: -O0

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetIntel UHD 610 CML GT13691215SE +/- 0.02, N = 310.32MIN: 10.16 / MAX: 16.451. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerIntel UHD 610 CML GT12004006008001000SE +/- 0.40, N = 3922.08MIN: 908.45 / MAX: 979.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mIntel UHD 610 CML GT1612182430SE +/- 0.46, N = 323.61MIN: 22.92 / MAX: 30.571. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdIntel UHD 610 CML GT1918273645SE +/- 0.02, N = 338.59MIN: 38.16 / MAX: 46.821. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyIntel UHD 610 CML GT120406080100SE +/- 0.03, N = 393.72MIN: 92.89 / MAX: 104.341. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50Intel UHD 610 CML GT1306090120150SE +/- 0.05, N = 3125.65MIN: 124.59 / MAX: 136.361. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 337.88MIN: 37.48 / MAX: 49.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18Intel UHD 610 CML GT11020304050SE +/- 0.02, N = 346.11MIN: 45.65 / MAX: 55.321. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16Intel UHD 610 CML GT160120180240300SE +/- 0.26, N = 3269.82MIN: 266.99 / MAX: 280.511. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetIntel UHD 610 CML GT11224364860SE +/- 0.03, N = 355.09MIN: 54.5 / MAX: 66.081. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefaceIntel UHD 610 CML GT10.55131.10261.65392.20522.7565SE +/- 0.02, N = 32.45MIN: 2.36 / MAX: 8.31. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0Intel UHD 610 CML GT1714212835SE +/- 0.01, N = 329.19MIN: 28.9 / MAX: 38.91. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetIntel UHD 610 CML GT148121620SE +/- 0.02, N = 317.45MIN: 17.25 / MAX: 23.551. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2Intel UHD 610 CML GT1246810SE +/- 0.04, N = 38.63MIN: 8.51 / MAX: 14.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3Intel UHD 610 CML GT148121620SE +/- 0.05, N = 315.15MIN: 14.93 / MAX: 21.191. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2Intel UHD 610 CML GT1510152025SE +/- 0.03, N = 320.77MIN: 20.49 / MAX: 26.721. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetIntel UHD 610 CML GT120406080100SE +/- 0.04, N = 375.75MIN: 75.1 / MAX: 86.991. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetIntel UHD 610 CML GT13691215SE +/- 0.00, N = 310.31MIN: 10.17 / MAX: 16.271. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerIntel UHD 610 CML GT12004006008001000SE +/- 0.37, N = 3922.27MIN: 909.35 / MAX: 1072.611. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mIntel UHD 610 CML GT1612182430SE +/- 0.01, N = 323.14MIN: 22.84 / MAX: 34.821. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 338.64MIN: 38.15 / MAX: 501. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyIntel UHD 610 CML GT120406080100SE +/- 0.29, N = 393.85MIN: 92.79 / MAX: 111.061. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50Intel UHD 610 CML GT1306090120150SE +/- 0.11, N = 3125.87MIN: 124.85 / MAX: 136.011. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 337.89MIN: 37.43 / MAX: 49.151. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18Intel UHD 610 CML GT11020304050SE +/- 0.16, N = 346.04MIN: 45.38 / MAX: 54.291. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16Intel UHD 610 CML GT160120180240300SE +/- 1.39, N = 3268.68MIN: 263.85 / MAX: 281.81. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetIntel UHD 610 CML GT11224364860SE +/- 0.17, N = 354.88MIN: 54.1 / MAX: 63.711. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefaceIntel UHD 610 CML GT10.55351.1071.66052.2142.7675SE +/- 0.02, N = 32.46MIN: 2.37 / MAX: 8.361. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0Intel UHD 610 CML GT1714212835SE +/- 0.06, N = 329.21MIN: 28.82 / MAX: 40.61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetIntel UHD 610 CML GT148121620SE +/- 0.03, N = 317.42MIN: 17.17 / MAX: 29.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2Intel UHD 610 CML GT1246810SE +/- 0.01, N = 38.65MIN: 8.53 / MAX: 14.531. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3Intel UHD 610 CML GT148121620SE +/- 0.01, N = 315.09MIN: 14.9 / MAX: 21.121. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2Intel UHD 610 CML GT1510152025SE +/- 0.04, N = 320.69MIN: 20.42 / MAX: 26.891. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetIntel UHD 610 CML GT120406080100SE +/- 0.02, N = 375.80MIN: 75.19 / MAX: 86.561. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT13K6K9K12K15KSE +/- 831.48, N = 1513223.71. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.01780.03560.05340.07120.089SE +/- 0.0042026, N = 150.07930331. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineIntel UHD 610 CML GT1120240360480600SE +/- 2.51, N = 3534.68

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value DecompositionIntel UHD 610 CML GT180160240320400SE +/- 0.72, N = 3357.661. (F9X) gfortran options: -O0

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT12004006008001000SE +/- 36.89, N = 151090.131. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.210.420.630.841.05SE +/- 0.033556, N = 150.9331971. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 610 CML GT12004006008001000SE +/- 8.02, N = 15851.921. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.26440.52880.79321.05761.322SE +/- 0.01029, N = 151.175171. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1306090120150SE +/- 7.92, N = 15135.211. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1246810SE +/- 0.30411, N = 157.645051. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 200Intel UHD 610 CML GT190K180K270K360K450KSE +/- 257.16, N = 34290631. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel ApproximationIntel UHD 610 CML GT170140210280350SE +/- 0.91, N = 3301.901. (F9X) gfortran options: -O0

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

Benchmark: scikit_qda

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: DenseNetIntel UHD 610 CML GT112002400360048006000SE +/- 2.51, N = 35394.68MIN: 5350.15 / MAX: 5444.471. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

Benchmark: scikit_linearridgeregression

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot HierarchicalIntel UHD 610 CML GT160120180240300SE +/- 0.14, N = 3278.831. (F9X) gfortran options: -O0

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: BLASIntel UHD 610 CML GT1306090120150SE +/- 1.53, N = 31371. (CXX) g++ options: -flto -pthread

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1816243240SE +/- 0.66, N = 1235.981. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.43, N = 1227.881. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1306090120150SE +/- 2.13, N = 12112.531. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1246810SE +/- 0.14224, N = 128.916251. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot NeighborsIntel UHD 610 CML GT160120180240300SE +/- 1.07, N = 3267.821. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSIntel UHD 610 CML GT160120180240300SE +/- 0.09, N = 3253.191. (F9X) gfortran options: -O0

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1612182430SE +/- 0.20, N = 1125.731. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1918273645SE +/- 0.29, N = 1138.891. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Isotonic / Pathological

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Isotonic / Logistic

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD RegressionIntel UHD 610 CML GT150100150200250SE +/- 0.63, N = 3228.721. (F9X) gfortran options: -O0

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.60, N = 342198.7MIN: 42136.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.97, N = 342203.1MIN: 421051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.88, N = 342196.3MIN: 42124.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature ExpansionsIntel UHD 610 CML GT150100150200250SE +/- 1.41, N = 3211.251. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient BoostingIntel UHD 610 CML GT14080120160200SE +/- 0.41, N = 3199.381. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs BosonIntel UHD 610 CML GT14080120160200SE +/- 1.57, N = 3194.071. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TreeIntel UHD 610 CML GT11122334455SE +/- 0.48, N = 1548.191. (F9X) gfortran options: -O0

Benchmark: Isotonic / Perturbed Logarithm

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 100Intel UHD 610 CML GT150K100K150K200K250KSE +/- 48.25, N = 32143991. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkIntel UHD 610 CML GT160120180240300SE +/- 0.11, N = 3290.97

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 200Intel UHD 610 CML GT140K80K120K160K200KSE +/- 312.59, N = 31973961. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without ReplacementIntel UHD 610 CML GT1306090120150SE +/- 1.02, N = 3146.721. (F9X) gfortran options: -O0

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 2.99, N = 321214.8MIN: 21156.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 2.25, N = 321213.8MIN: 21162.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 10.14, N = 321191.3MIN: 21127.41. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointIntel UHD 610 CML GT14080120160200SE +/- 0.26, N = 3168.69

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SparsifyIntel UHD 610 CML GT120406080100SE +/- 0.34, N = 3107.141. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting AdultIntel UHD 610 CML GT120406080100SE +/- 0.18, N = 3104.541. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEIntel UHD 610 CML GT1306090120150SE +/- 0.92, N = 3139.35

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot WardIntel UHD 610 CML GT120406080100SE +/- 0.06, N = 394.531. (F9X) gfortran options: -O0

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaIntel UHD 610 CML GT1306090120150SE +/- 0.17, N = 3118.31

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST DatasetIntel UHD 610 CML GT120406080100SE +/- 0.09, N = 387.881. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAIntel UHD 610 CML GT120406080100SE +/- 0.30, N = 385.501. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text VectorizersIntel UHD 610 CML GT120406080100SE +/- 0.28, N = 381.391. (F9X) gfortran options: -O0

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 610 CML GT12K4K6K8K10KSE +/- 0.27, N = 39433.671. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.02390.04780.07170.09560.1195SE +/- 0.000003, N = 30.1060031. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 100Intel UHD 610 CML GT120K40K60K80K100KSE +/- 87.05, N = 3988491. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT12004006008001000SE +/- 1.71, N = 3914.991. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.24590.49180.73770.98361.2295SE +/- 0.00204, N = 31.092911. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1160320480640800SE +/- 1.38, N = 3750.731. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.29970.59940.89911.19881.4985SE +/- 0.00245, N = 31.332051. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 610 CML GT190180270360450SE +/- 0.08, N = 3410.751. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.54781.09561.64342.19122.739SE +/- 0.00046, N = 32.434581. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1100200300400500SE +/- 1.62, N = 3461.301. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.48780.97561.46341.95122.439SE +/- 0.00760, N = 32.167831. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1816243240SE +/- 0.07, N = 333.951. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1714212835SE +/- 0.06, N = 329.451. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 610 CML GT13K6K9K12K15KSE +/- 0.71, N = 311809.47MIN: 11624.8 / MAX: 11889.261. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 610 CML GT10.03830.07660.11490.15320.1915SE +/- 0.00, N = 30.171. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1306090120150SE +/- 0.48, N = 3112.391. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1246810SE +/- 0.03794, N = 38.897701. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT120406080100SE +/- 1.08, N = 396.621. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT13691215SE +/- 0.11, N = 310.351. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.09, N = 331.291. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.09, N = 331.951. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic RegressionIntel UHD 610 CML GT11428425670SE +/- 0.03, N = 361.601. (F9X) gfortran options: -O0

Benchmark: Plot Non-Negative Matrix Factorization

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: KeyError:

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT18001600240032004000SE +/- 2.32, N = 33863.39MIN: 3664.15 / MAX: 4006.241. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT10.1170.2340.3510.4680.585SE +/- 0.00, N = 30.521. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyIntel UHD 610 CML GT11530456075SE +/- 0.34, N = 368.53

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 6.01, N = 3810.07MIN: 656.58 / MAX: 849.911. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 610 CML GT10.55581.11161.66742.22322.779SE +/- 0.02, N = 32.471. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet QuantIntel UHD 610 CML GT1120K240K360K480K600KSE +/- 75.97, N = 3576680

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4Intel UHD 610 CML GT190K180K270K360K450KSE +/- 295.20, N = 3426984

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2Intel UHD 610 CML GT190K180K270K360K450KSE +/- 72.96, N = 3397245

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 3.54, N = 3926.63MIN: 767.41 / MAX: 991.251. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 610 CML GT10.48380.96761.45141.93522.419SE +/- 0.01, N = 32.151. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 8.41, N = 3941.81MIN: 825.86 / MAX: 990.851. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 610 CML GT10.4770.9541.4311.9082.385SE +/- 0.02, N = 32.121. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.03, N = 3119.47MIN: 90.68 / MAX: 145.721. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.01, N = 316.741. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 610 CML GT150100150200250SE +/- 0.25, N = 3238.38MIN: 230.11 / MAX: 256.021. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 610 CML GT1246810SE +/- 0.01, N = 38.391. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet MobileIntel UHD 610 CML GT19K18K27K36K45KSE +/- 77.05, N = 341500.3

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.32, N = 3125.63MIN: 81.99 / MAX: 143.871. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.04, N = 315.911. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 610 CML GT14080120160200SE +/- 0.21, N = 3158.68MIN: 99.47 / MAX: 177.311. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 610 CML GT13691215SE +/- 0.02, N = 312.601. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet FloatIntel UHD 610 CML GT15K10K15K20K25KSE +/- 36.79, N = 322665.5

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetIntel UHD 610 CML GT17K14K21K28K35KSE +/- 65.07, N = 331464.6

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT11326395265SE +/- 0.04, N = 359.63MIN: 33.23 / MAX: 73.951. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT1816243240SE +/- 0.02, N = 333.531. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.01, N = 3120.87MIN: 100.98 / MAX: 135.071. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.00, N = 316.541. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.04, N = 3128.29MIN: 74.44 / MAX: 146.591. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.01, N = 315.581. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 610 CML GT1510152025SE +/- 0.02, N = 318.84MIN: 11.22 / MAX: 33.211. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 610 CML GT120406080100SE +/- 0.10, N = 3106.111. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 338.50MIN: 21.89 / MAX: 52.211. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT11224364860SE +/- 0.01, N = 351.931. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 338.92MIN: 22.17 / MAX: 55.681. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 610 CML GT11224364860SE +/- 0.06, N = 351.361. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 610 CML GT10.8911.7822.6733.5644.455SE +/- 0.01, N = 33.96MIN: 2.43 / MAX: 19.951. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 610 CML GT1110220330440550SE +/- 0.61, N = 3504.021. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 610 CML GT10.34430.68861.03291.37721.7215SE +/- 0.00, N = 31.53MIN: 0.88 / MAX: 18.361. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 610 CML GT130060090012001500SE +/- 1.99, N = 31300.471. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical OnlyIntel UHD 610 CML GT1714212835SE +/- 0.05, N = 327.721. (F9X) gfortran options: -O0

R Benchmark

This test is a quick-running survey of general R performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterR BenchmarkIntel UHD 610 CML GT10.08040.16080.24120.32160.402SE +/- 0.0004, N = 30.35721. R scripting front-end version 3.6.3 (2020-02-29)

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianIntel UHD 610 CML GT1816243240SE +/- 0.03, N = 334.11

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmIntel UHD 610 CML GT1714212835SE +/- 0.02, N = 327.75

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28Intel UHD 610 CML GT1612182430SE +/- 0.08, N = 327.001. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: MobileNet v2Intel UHD 610 CML GT180160240320400SE +/- 0.14, N = 3374.72MIN: 373.05 / MAX: 386.671. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v1.1Intel UHD 610 CML GT170140210280350SE +/- 0.04, N = 3335.26MIN: 334.98 / MAX: 336.551. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT120406080100SE +/- 0.25, N = 378.29MIN: 75.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT1510152025SE +/- 0.05, N = 319.79MIN: 19.521. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 337.76MIN: 37.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT13691215SE +/- 0.02, N = 312.28MIN: 12.131. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: RCV1 Logreg Convergencet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: IndexError: list index out of range

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT1918273645SE +/- 0.09, N = 338.02MIN: 37.161. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

Test: DNN - Deep Neural Network

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: [ERROR:[email protected]] global persistence.cpp:505 open Can't open file: '/opencv_extra-4.7.0/testdata/perf/dnn.xml' in read mode

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT11.32962.65923.98885.31846.648SE +/- 0.01192, N = 35.90947MIN: 5.661. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT11326395265SE +/- 0.07, N = 360.25MIN: 59.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT11122334455SE +/- 0.20, N = 348.78MIN: 47.031. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v2Intel UHD 610 CML GT120406080100SE +/- 0.28, N = 375.16MIN: 74.69 / MAX: 79.561. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT120406080100SE +/- 0.12, N = 392.42MIN: 89.591. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT1612182430SE +/- 0.03, N = 326.95MIN: 26.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

Device: CPU - Batch Size: 16 - Model: VGG-16

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 256 - Model: ResNet-50

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 256 - Model: AlexNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 512 - Model: ResNet-50

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 32 - Model: ResNet-50

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 16 - Model: GoogLeNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 32 - Model: AlexNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 256 - Model: VGG-16

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 64 - Model: VGG-16

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 16 - Model: AlexNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 32 - Model: VGG-16

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 512 - Model: VGG-16

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 512 - Model: AlexNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 256 - Model: GoogLeNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 64 - Model: ResNet-50

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 16 - Model: ResNet-50

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 512 - Model: GoogLeNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 32 - Model: GoogLeNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 64 - Model: AlexNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 64 - Model: GoogLeNet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Plot Parallel Pairwise

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: numpy.core._exceptions.MemoryError: Unable to allocate 74.5 GiB for an array with shape (100000, 100000) and data type float64

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: OSError: Neural Magic: Encountered exception while trying to read arch.bin: Unable to determine instruction set.

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Glmnet

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'glmnet.elastic_net'

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

spaCy

The spaCy library is an open-source solution for advanced neural language processing (NLP). The spaCy library leverages Python and is a leading neural language processing solution. This test profile times the spaCy CPU performance with various models. Learn more via the OpenBenchmarking.org test page.

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: TypeError: issubclass() arg 1 must be a class

ECP-CANDLE

The CANDLE benchmark codes implement deep learning architectures relevant to problems in cancer. These architectures address problems at different biological scales, specifically problems at the molecular, cellular and population scales. Learn more via the OpenBenchmarking.org test page.

Benchmark: P1B2

Intel UHD 610 CML GT1: The test quit with a non-zero exit status.

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

Acceleration: CPU

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

ECP-CANDLE

The CANDLE benchmark codes implement deep learning architectures relevant to problems in cancer. These architectures address problems at different biological scales, specifically problems at the molecular, cellular and population scales. Learn more via the OpenBenchmarking.org test page.

Benchmark: P3B1

Intel UHD 610 CML GT1: The test quit with a non-zero exit status.

Benchmark: P3B2

Intel UHD 610 CML GT1: The test quit with a non-zero exit status.

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

Intel UHD 610 CML GT1: The test quit with a non-zero exit status.

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

Model: yolov4 - Device: CPU - Executor: Standard

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "yolov4/yolov4.onnx" failed: No such file or directory

Model: yolov4 - Device: CPU - Executor: Parallel

Intel UHD 610 CML GT1: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "yolov4/yolov4.onnx" failed: No such file or directory

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 610 CML GT1: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

187 Results Shown

Whisper.cpp:
  ggml-medium.en - 2016 State of the Union
  ggml-small.en - 2016 State of the Union
Scikit-Learn
Whisper.cpp
Caffe
Scikit-Learn:
  GLM
  Lasso
  SAGA
PlaidML
Scikit-Learn:
  Kernel PCA Solvers / Time vs. N Components
  TSNE MNIST Dataset
Caffe
PlaidML
Mobile Neural Network:
  inception-v3
  mobilenet-v1-1.0
  MobileNetV2_224
  SqueezeNetV1.0
  resnet-v2-50
  squeezenetv1.1
  mobilenetV3
  nasnet
Scikit-Learn
Numenta Anomaly Benchmark
Scikit-Learn:
  Plot Lasso Path
  Kernel PCA Solvers / Time vs. N Samples
  LocalOutlierFactor
  Hist Gradient Boosting Threading
NCNN:
  Vulkan GPU - FastestDet
  Vulkan GPU - vision_transformer
  Vulkan GPU - regnety_400m
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - yolov4-tiny
  Vulkan GPU - resnet50
  Vulkan GPU - alexnet
  Vulkan GPU - resnet18
  Vulkan GPU - vgg16
  Vulkan GPU - googlenet
  Vulkan GPU - blazeface
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - mnasnet
  Vulkan GPU - shufflenet-v2
  Vulkan GPU-v3-v3 - mobilenet-v3
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU - mobilenet
  CPU - FastestDet
  CPU - vision_transformer
  CPU - regnety_400m
  CPU - squeezenet_ssd
  CPU - yolov4-tiny
  CPU - resnet50
  CPU - alexnet
  CPU - resnet18
  CPU - vgg16
  CPU - googlenet
  CPU - blazeface
  CPU - efficientnet-b0
  CPU - mnasnet
  CPU - shufflenet-v2
  CPU-v3-v3 - mobilenet-v3
  CPU-v2-v2 - mobilenet-v2
  CPU - mobilenet
ONNX Runtime:
  fcn-resnet101-11 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
Numenta Anomaly Benchmark
Scikit-Learn
ONNX Runtime:
  Faster R-CNN R-50-FPN-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
Caffe
Scikit-Learn
TNN
Scikit-Learn
LeelaChessZero
ONNX Runtime:
  GPT-2 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
Scikit-Learn:
  Plot Neighbors
  Plot OMP vs. LARS
ONNX Runtime:
  CaffeNet 12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
Scikit-Learn
oneDNN:
  Recurrent Neural Network Training - f32 - CPU
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
Scikit-Learn:
  Feature Expansions
  Hist Gradient Boosting
  Hist Gradient Boosting Higgs Boson
  Tree
Caffe
Numpy Benchmark
Caffe
Scikit-Learn
oneDNN:
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - f32 - CPU
Numenta Anomaly Benchmark
Scikit-Learn:
  Sparsify
  Hist Gradient Boosting Adult
Numenta Anomaly Benchmark
Scikit-Learn
Mlpack Benchmark
Scikit-Learn:
  MNIST Dataset
  Plot Incremental PCA
  Text Vectorizers
ONNX Runtime:
  fcn-resnet101-11 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
Caffe
ONNX Runtime:
  bertsquad-12 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  Faster R-CNN R-50-FPN-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  ResNet50 v1-12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  CaffeNet 12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
Scikit-Learn
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
Numenta Anomaly Benchmark
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
TensorFlow Lite:
  Mobilenet Quant
  Inception V4
  Inception ResNet V2
OpenVINO:
  Person Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
TensorFlow Lite
OpenVINO:
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
TensorFlow Lite:
  Mobilenet Float
  SqueezeNet
OpenVINO:
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
Scikit-Learn
R Benchmark
Numenta Anomaly Benchmark
Mlpack Benchmark
RNNoise
TNN:
  CPU - MobileNet v2
  CPU - SqueezeNet v1.1
oneDNN:
  Deconvolution Batch shapes_1d - f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  IP Shapes 1D - f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
  IP Shapes 3D - f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
  Convolution Batch Shapes Auto - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
TNN
oneDNN:
  Deconvolution Batch shapes_3d - f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU