TestRunNewCMake

Intel Pentium Gold G6400 testing with a ASRock H510M-HDV/M.2 SE (P1.60 BIOS) and Intel UHD 610 CML GT1 3GB on Ubuntu 20.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2311037-HERT-H510G6431&grr.

TestRunNewCMakeProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionIntel UHD 610 CML GT1Intel Pentium Gold G6400 @ 4.00GHz (2 Cores / 4 Threads)ASRock H510M-HDV/M.2 SE (P1.60 BIOS)Intel Comet Lake PCH3584MB1000GB Western Digital WDS100T2B0AIntel UHD 610 CML GT1 3GB (1050MHz)Realtek ALC897G185BGEL01Realtek RTL8111/8168/8411Ubuntu 20.045.15.0-86-generic (x86_64)GNOME Shell 3.36.9X Server 1.20.134.6 Mesa 21.2.61.2.182GCC 9.4.0ext41368x768OpenBenchmarking.org- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-9-9QDOt0/gcc-9-9.4.0/debian/tmp-nvptx/usr,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xf8 - Thermald 1.9.1 - Python 3.8.10- gather_data_sampling: Not affected + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

TestRunNewCMakewhisper-cpp: ggml-medium.en - 2016 State of the Unionwhisper-cpp: ggml-small.en - 2016 State of the Unionscikit-learn: Sparse Rand Projections / 100 Iterationswhisper-cpp: ggml-base.en - 2016 State of the Unioncaffe: GoogleNet - CPU - 1000scikit-learn: GLMscikit-learn: Lassoscikit-learn: SAGAplaidml: No - Inference - VGG16 - CPUscikit-learn: Kernel PCA Solvers / Time vs. N Componentsscikit-learn: TSNE MNIST Datasetcaffe: AlexNet - CPU - 1000plaidml: No - Inference - ResNet 50 - CPUmnn: inception-v3mnn: mobilenet-v1-1.0mnn: MobileNetV2_224mnn: SqueezeNetV1.0mnn: resnet-v2-50mnn: squeezenetv1.1mnn: mobilenetV3mnn: nasnetscikit-learn: Covertype Dataset Benchmarknumenta-nab: KNN CADscikit-learn: Plot Lasso Pathscikit-learn: Kernel PCA Solvers / Time vs. N Samplesscikit-learn: LocalOutlierFactorscikit-learn: Hist Gradient Boosting Threadingncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelnumenta-nab: Earthgecko Skylinescikit-learn: Plot Singular Value Decompositiononnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelcaffe: GoogleNet - CPU - 200scikit-learn: Plot Polynomial Kernel Approximationtnn: CPU - DenseNetscikit-learn: Plot Hierarchicallczero: BLASonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardscikit-learn: Plot Neighborsscikit-learn: Plot OMP vs. LARSonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardscikit-learn: SGD Regressiononednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUscikit-learn: Feature Expansionsscikit-learn: Hist Gradient Boostingscikit-learn: Hist Gradient Boosting Higgs Bosonscikit-learn: Treecaffe: GoogleNet - CPU - 100numpy: caffe: AlexNet - CPU - 200scikit-learn: Sample Without Replacementonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUnumenta-nab: Bayesian Changepointscikit-learn: Sparsifyscikit-learn: Hist Gradient Boosting Adultnumenta-nab: Contextual Anomaly Detector OSEscikit-learn: Plot Wardmlpack: scikit_icascikit-learn: MNIST Datasetscikit-learn: Plot Incremental PCAscikit-learn: Text Vectorizersonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardcaffe: AlexNet - CPU - 100onnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelscikit-learn: 20 Newsgroups / Logistic Regressionopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUnumenta-nab: Relative Entropyopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUtensorflow-lite: Mobilenet Quanttensorflow-lite: Inception V4tensorflow-lite: Inception ResNet V2openvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUtensorflow-lite: NASNet Mobileopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUtensorflow-lite: Mobilenet Floattensorflow-lite: SqueezeNetopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUscikit-learn: Hist Gradient Boosting Categorical Onlyrbenchmark: numenta-nab: Windowed Gaussianmlpack: scikit_svmrnnoise: tnn: CPU - MobileNet v2tnn: CPU - SqueezeNet v1.1onednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUtnn: CPU - SqueezeNet v2onednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUIntel UHD 610 CML GT141069.32311708.1743104.8493200.8515021427901129.1261084.1381078.4861.59327.831807.6519864402.40158.58520.61313.32322.634119.02212.2343.86130.010584.048726.697476.230463.431456.448445.69810.32922.0823.6138.5993.72125.6537.8846.11269.8255.092.4529.1917.458.6315.1520.7775.7510.31922.2723.1438.6493.85125.8737.8946.04268.6854.882.4629.2117.428.6515.0920.6975.8013223.70.0793033534.684357.6611090.1310.933197851.9181.17517135.2117.64505429063301.8985394.682278.83413735.975627.8791112.5278.91625267.817253.19325.730038.8853228.71542198.742203.142196.3211.252199.375194.06948.190214399290.97197396146.72321214.821213.821191.3168.694107.140104.542139.35394.532118.3187.87985.50281.3859433.670.10600398849914.9941.09291750.7261.33205410.7462.43458461.3002.1678333.947829.452611809.470.17112.3918.8977096.619610.352231.294031.953661.6003863.390.5268.527810.072.47576680426984397245926.632.15941.812.12119.4716.74238.388.3941500.3125.6315.91158.6812.6022665.531464.659.6333.53120.8716.54128.2915.5818.84106.1138.5051.9338.9251.363.96504.021.531300.4727.7230.357234.11427.7527.004374.720335.25878.287519.792837.761312.277838.01615.9094760.253248.778875.16392.420426.9529OpenBenchmarking.org

Whisper.cpp

Model: ggml-medium.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-medium.en - Input: 2016 State of the UnionIntel UHD 610 CML GT19K18K27K36K45KSE +/- 369.73, N = 341069.321. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Whisper.cpp

Model: ggml-small.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-small.en - Input: 2016 State of the UnionIntel UHD 610 CML GT13K6K9K12K15KSE +/- 11.17, N = 311708.171. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Scikit-Learn

Benchmark: Sparse Random Projections / 100 Iterations

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 IterationsIntel UHD 610 CML GT17001400210028003500SE +/- 2.11, N = 33104.851. (F9X) gfortran options: -O0

Whisper.cpp

Model: ggml-base.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-base.en - Input: 2016 State of the UnionIntel UHD 610 CML GT17001400210028003500SE +/- 0.85, N = 33200.851. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 1000

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 1000Intel UHD 610 CML GT1500K1000K1500K2000K2500KSE +/- 68.07, N = 321427901. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Benchmark: GLM

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMIntel UHD 610 CML GT12004006008001000SE +/- 2.76, N = 31129.131. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Lasso

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LassoIntel UHD 610 CML GT12004006008001000SE +/- 0.75, N = 31084.141. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: SAGA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAIntel UHD 610 CML GT12004006008001000SE +/- 0.44, N = 31078.491. (F9X) gfortran options: -O0

PlaidML

FP16: No - Mode: Inference - Network: VGG16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUIntel UHD 610 CML GT10.35780.71561.07341.43121.789SE +/- 0.02, N = 31.59

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Components

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N ComponentsIntel UHD 610 CML GT170140210280350SE +/- 4.18, N = 9327.831. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: TSNE MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST DatasetIntel UHD 610 CML GT12004006008001000SE +/- 1.86, N = 3807.651. (F9X) gfortran options: -O0

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 1000

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1000Intel UHD 610 CML GT1200K400K600K800K1000KSE +/- 69.96, N = 39864401. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

PlaidML

FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUIntel UHD 610 CML GT10.541.081.622.162.7SE +/- 0.00, N = 32.40

Mobile Neural Network

Model: inception-v3

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: inception-v3Intel UHD 610 CML GT14080120160200SE +/- 0.13, N = 3158.59MIN: 156.93 / MAX: 210.331. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: mobilenet-v1-1.0

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenet-v1-1.0Intel UHD 610 CML GT1510152025SE +/- 0.03, N = 320.61MIN: 20.32 / MAX: 34.591. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: MobileNetV2_224

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: MobileNetV2_224Intel UHD 610 CML GT13691215SE +/- 0.01, N = 313.32MIN: 13.14 / MAX: 27.141. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: SqueezeNetV1.0

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Intel UHD 610 CML GT1510152025SE +/- 0.01, N = 322.63MIN: 22.38 / MAX: 36.291. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: resnet-v2-50

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: resnet-v2-50Intel UHD 610 CML GT1306090120150SE +/- 0.09, N = 3119.02MIN: 117.79 / MAX: 154.341. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: squeezenetv1.1

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: squeezenetv1.1Intel UHD 610 CML GT13691215SE +/- 0.02, N = 312.23MIN: 12.06 / MAX: 26.181. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: mobilenetV3

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenetV3Intel UHD 610 CML GT10.86871.73742.60613.47484.3435SE +/- 0.004, N = 33.861MIN: 3.78 / MAX: 17.861. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: nasnet

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: nasnetIntel UHD 610 CML GT1714212835SE +/- 0.07, N = 330.01MIN: 29.6 / MAX: 49.621. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Scikit-Learn

Benchmark: Covertype Dataset Benchmark

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset BenchmarkIntel UHD 610 CML GT1130260390520650SE +/- 1.24, N = 3584.051. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Detector: KNN CAD

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADIntel UHD 610 CML GT1160320480640800SE +/- 0.28, N = 3726.70

Scikit-Learn

Benchmark: Plot Lasso Path

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso PathIntel UHD 610 CML GT1100200300400500SE +/- 0.25, N = 3476.231. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Samples

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N SamplesIntel UHD 610 CML GT1100200300400500SE +/- 0.23, N = 3463.431. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: LocalOutlierFactor

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorIntel UHD 610 CML GT1100200300400500SE +/- 0.41, N = 3456.451. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Hist Gradient Boosting Threading

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting ThreadingIntel UHD 610 CML GT1100200300400500SE +/- 3.29, N = 3445.701. (F9X) gfortran options: -O0

NCNN

Target: Vulkan GPU - Model: FastestDet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetIntel UHD 610 CML GT13691215SE +/- 0.02, N = 310.32MIN: 10.16 / MAX: 16.451. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: vision_transformer

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerIntel UHD 610 CML GT12004006008001000SE +/- 0.40, N = 3922.08MIN: 908.45 / MAX: 979.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: regnety_400m

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mIntel UHD 610 CML GT1612182430SE +/- 0.46, N = 323.61MIN: 22.92 / MAX: 30.571. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: squeezenet_ssd

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdIntel UHD 610 CML GT1918273645SE +/- 0.02, N = 338.59MIN: 38.16 / MAX: 46.821. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: yolov4-tiny

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyIntel UHD 610 CML GT120406080100SE +/- 0.03, N = 393.72MIN: 92.89 / MAX: 104.341. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: resnet50

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50Intel UHD 610 CML GT1306090120150SE +/- 0.05, N = 3125.65MIN: 124.59 / MAX: 136.361. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: alexnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 337.88MIN: 37.48 / MAX: 49.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: resnet18

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18Intel UHD 610 CML GT11020304050SE +/- 0.02, N = 346.11MIN: 45.65 / MAX: 55.321. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: vgg16

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16Intel UHD 610 CML GT160120180240300SE +/- 0.26, N = 3269.82MIN: 266.99 / MAX: 280.511. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: googlenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetIntel UHD 610 CML GT11224364860SE +/- 0.03, N = 355.09MIN: 54.5 / MAX: 66.081. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: blazeface

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefaceIntel UHD 610 CML GT10.55131.10261.65392.20522.7565SE +/- 0.02, N = 32.45MIN: 2.36 / MAX: 8.31. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: efficientnet-b0

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0Intel UHD 610 CML GT1714212835SE +/- 0.01, N = 329.19MIN: 28.9 / MAX: 38.91. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: mnasnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetIntel UHD 610 CML GT148121620SE +/- 0.02, N = 317.45MIN: 17.25 / MAX: 23.551. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: shufflenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2Intel UHD 610 CML GT1246810SE +/- 0.04, N = 38.63MIN: 8.51 / MAX: 14.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3Intel UHD 610 CML GT148121620SE +/- 0.05, N = 315.15MIN: 14.93 / MAX: 21.191. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2Intel UHD 610 CML GT1510152025SE +/- 0.03, N = 320.77MIN: 20.49 / MAX: 26.721. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: mobilenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetIntel UHD 610 CML GT120406080100SE +/- 0.04, N = 375.75MIN: 75.1 / MAX: 86.991. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: FastestDet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetIntel UHD 610 CML GT13691215SE +/- 0.00, N = 310.31MIN: 10.17 / MAX: 16.271. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: vision_transformer

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerIntel UHD 610 CML GT12004006008001000SE +/- 0.37, N = 3922.27MIN: 909.35 / MAX: 1072.611. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: regnety_400m

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mIntel UHD 610 CML GT1612182430SE +/- 0.01, N = 323.14MIN: 22.84 / MAX: 34.821. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: squeezenet_ssd

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 338.64MIN: 38.15 / MAX: 501. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: yolov4-tiny

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyIntel UHD 610 CML GT120406080100SE +/- 0.29, N = 393.85MIN: 92.79 / MAX: 111.061. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: resnet50

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50Intel UHD 610 CML GT1306090120150SE +/- 0.11, N = 3125.87MIN: 124.85 / MAX: 136.011. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: alexnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 337.89MIN: 37.43 / MAX: 49.151. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: resnet18

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18Intel UHD 610 CML GT11020304050SE +/- 0.16, N = 346.04MIN: 45.38 / MAX: 54.291. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: vgg16

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16Intel UHD 610 CML GT160120180240300SE +/- 1.39, N = 3268.68MIN: 263.85 / MAX: 281.81. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: googlenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetIntel UHD 610 CML GT11224364860SE +/- 0.17, N = 354.88MIN: 54.1 / MAX: 63.711. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: blazeface

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefaceIntel UHD 610 CML GT10.55351.1071.66052.2142.7675SE +/- 0.02, N = 32.46MIN: 2.37 / MAX: 8.361. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: efficientnet-b0

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0Intel UHD 610 CML GT1714212835SE +/- 0.06, N = 329.21MIN: 28.82 / MAX: 40.61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: mnasnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetIntel UHD 610 CML GT148121620SE +/- 0.03, N = 317.42MIN: 17.17 / MAX: 29.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: shufflenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2Intel UHD 610 CML GT1246810SE +/- 0.01, N = 38.65MIN: 8.53 / MAX: 14.531. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU-v3-v3 - Model: mobilenet-v3

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3Intel UHD 610 CML GT148121620SE +/- 0.01, N = 315.09MIN: 14.9 / MAX: 21.121. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU-v2-v2 - Model: mobilenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2Intel UHD 610 CML GT1510152025SE +/- 0.04, N = 320.69MIN: 20.42 / MAX: 26.891. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: mobilenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetIntel UHD 610 CML GT120406080100SE +/- 0.02, N = 375.80MIN: 75.19 / MAX: 86.561. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT13K6K9K12K15KSE +/- 831.48, N = 1513223.71. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.01780.03560.05340.07120.089SE +/- 0.0042026, N = 150.07930331. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Numenta Anomaly Benchmark

Detector: Earthgecko Skyline

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineIntel UHD 610 CML GT1120240360480600SE +/- 2.51, N = 3534.68

Scikit-Learn

Benchmark: Plot Singular Value Decomposition

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value DecompositionIntel UHD 610 CML GT180160240320400SE +/- 0.72, N = 3357.661. (F9X) gfortran options: -O0

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT12004006008001000SE +/- 36.89, N = 151090.131. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.210.420.630.841.05SE +/- 0.033556, N = 150.9331971. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 610 CML GT12004006008001000SE +/- 8.02, N = 15851.921. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.26440.52880.79321.05761.322SE +/- 0.01029, N = 151.175171. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1306090120150SE +/- 7.92, N = 15135.211. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1246810SE +/- 0.30411, N = 157.645051. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 200

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 200Intel UHD 610 CML GT190K180K270K360K450KSE +/- 257.16, N = 34290631. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Benchmark: Plot Polynomial Kernel Approximation

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel ApproximationIntel UHD 610 CML GT170140210280350SE +/- 0.91, N = 3301.901. (F9X) gfortran options: -O0

TNN

Target: CPU - Model: DenseNet

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: DenseNetIntel UHD 610 CML GT112002400360048006000SE +/- 2.51, N = 35394.68MIN: 5350.15 / MAX: 5444.471. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

Scikit-Learn

Benchmark: Plot Hierarchical

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot HierarchicalIntel UHD 610 CML GT160120180240300SE +/- 0.14, N = 3278.831. (F9X) gfortran options: -O0

LeelaChessZero

Backend: BLAS

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: BLASIntel UHD 610 CML GT1306090120150SE +/- 1.53, N = 31371. (CXX) g++ options: -flto -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1816243240SE +/- 0.66, N = 1235.981. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.43, N = 1227.881. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1306090120150SE +/- 2.13, N = 12112.531. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1246810SE +/- 0.14224, N = 128.916251. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Benchmark: Plot Neighbors

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot NeighborsIntel UHD 610 CML GT160120180240300SE +/- 1.07, N = 3267.821. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Plot OMP vs. LARS

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSIntel UHD 610 CML GT160120180240300SE +/- 0.09, N = 3253.191. (F9X) gfortran options: -O0

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1612182430SE +/- 0.20, N = 1125.731. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1918273645SE +/- 0.29, N = 1138.891. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Benchmark: SGD Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD RegressionIntel UHD 610 CML GT150100150200250SE +/- 0.63, N = 3228.721. (F9X) gfortran options: -O0

oneDNN

Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.60, N = 342198.7MIN: 42136.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.97, N = 342203.1MIN: 421051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 610 CML GT19K18K27K36K45KSE +/- 4.88, N = 342196.3MIN: 42124.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Scikit-Learn

Benchmark: Feature Expansions

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature ExpansionsIntel UHD 610 CML GT150100150200250SE +/- 1.41, N = 3211.251. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Hist Gradient Boosting

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient BoostingIntel UHD 610 CML GT14080120160200SE +/- 0.41, N = 3199.381. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Hist Gradient Boosting Higgs Boson

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs BosonIntel UHD 610 CML GT14080120160200SE +/- 1.57, N = 3194.071. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Tree

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TreeIntel UHD 610 CML GT11122334455SE +/- 0.48, N = 1548.191. (F9X) gfortran options: -O0

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 100

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 100Intel UHD 610 CML GT150K100K150K200K250KSE +/- 48.25, N = 32143991. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Numpy Benchmark

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkIntel UHD 610 CML GT160120180240300SE +/- 0.11, N = 3290.97

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 200

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 200Intel UHD 610 CML GT140K80K120K160K200KSE +/- 312.59, N = 31973961. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Benchmark: Sample Without Replacement

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without ReplacementIntel UHD 610 CML GT1306090120150SE +/- 1.02, N = 3146.721. (F9X) gfortran options: -O0

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 2.99, N = 321214.8MIN: 21156.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 2.25, N = 321213.8MIN: 21162.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT15K10K15K20K25KSE +/- 10.14, N = 321191.3MIN: 21127.41. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Numenta Anomaly Benchmark

Detector: Bayesian Changepoint

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointIntel UHD 610 CML GT14080120160200SE +/- 0.26, N = 3168.69

Scikit-Learn

Benchmark: Sparsify

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SparsifyIntel UHD 610 CML GT120406080100SE +/- 0.34, N = 3107.141. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Hist Gradient Boosting Adult

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting AdultIntel UHD 610 CML GT120406080100SE +/- 0.18, N = 3104.541. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Detector: Contextual Anomaly Detector OSE

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEIntel UHD 610 CML GT1306090120150SE +/- 0.92, N = 3139.35

Scikit-Learn

Benchmark: Plot Ward

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot WardIntel UHD 610 CML GT120406080100SE +/- 0.06, N = 394.531. (F9X) gfortran options: -O0

Mlpack Benchmark

Benchmark: scikit_ica

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaIntel UHD 610 CML GT1306090120150SE +/- 0.17, N = 3118.31

Scikit-Learn

Benchmark: MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST DatasetIntel UHD 610 CML GT120406080100SE +/- 0.09, N = 387.881. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Plot Incremental PCA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAIntel UHD 610 CML GT120406080100SE +/- 0.30, N = 385.501. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Text Vectorizers

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text VectorizersIntel UHD 610 CML GT120406080100SE +/- 0.28, N = 381.391. (F9X) gfortran options: -O0

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 610 CML GT12K4K6K8K10KSE +/- 0.27, N = 39433.671. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.02390.04780.07170.09560.1195SE +/- 0.000003, N = 30.1060031. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 100

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 100Intel UHD 610 CML GT120K40K60K80K100KSE +/- 87.05, N = 3988491. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT12004006008001000SE +/- 1.71, N = 3914.991. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.24590.49180.73770.98361.2295SE +/- 0.00204, N = 31.092911. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1160320480640800SE +/- 1.38, N = 3750.731. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.29970.59940.89911.19881.4985SE +/- 0.00245, N = 31.332051. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 610 CML GT190180270360450SE +/- 0.08, N = 3410.751. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 610 CML GT10.54781.09561.64342.19122.739SE +/- 0.00046, N = 32.434581. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1100200300400500SE +/- 1.62, N = 3461.301. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT10.48780.97561.46341.95122.439SE +/- 0.00760, N = 32.167831. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1816243240SE +/- 0.07, N = 333.951. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 610 CML GT1714212835SE +/- 0.06, N = 329.451. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 610 CML GT13K6K9K12K15KSE +/- 0.71, N = 311809.47MIN: 11624.8 / MAX: 11889.261. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 610 CML GT10.03830.07660.11490.15320.1915SE +/- 0.00, N = 30.171. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1306090120150SE +/- 0.48, N = 3112.391. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1246810SE +/- 0.03794, N = 38.897701. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT120406080100SE +/- 1.08, N = 396.621. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 610 CML GT13691215SE +/- 0.11, N = 310.351. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.09, N = 331.291. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 610 CML GT1714212835SE +/- 0.09, N = 331.951. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Benchmark: 20 Newsgroups / Logistic Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic RegressionIntel UHD 610 CML GT11428425670SE +/- 0.03, N = 361.601. (F9X) gfortran options: -O0

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT18001600240032004000SE +/- 2.32, N = 33863.39MIN: 3664.15 / MAX: 4006.241. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT10.1170.2340.3510.4680.585SE +/- 0.00, N = 30.521. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

Numenta Anomaly Benchmark

Detector: Relative Entropy

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyIntel UHD 610 CML GT11530456075SE +/- 0.34, N = 368.53

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 6.01, N = 3810.07MIN: 656.58 / MAX: 849.911. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 610 CML GT10.55581.11161.66742.22322.779SE +/- 0.02, N = 32.471. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

Model: Mobilenet Quant

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet QuantIntel UHD 610 CML GT1120K240K360K480K600KSE +/- 75.97, N = 3576680

TensorFlow Lite

Model: Inception V4

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4Intel UHD 610 CML GT190K180K270K360K450KSE +/- 295.20, N = 3426984

TensorFlow Lite

Model: Inception ResNet V2

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2Intel UHD 610 CML GT190K180K270K360K450KSE +/- 72.96, N = 3397245

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 3.54, N = 3926.63MIN: 767.41 / MAX: 991.251. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 610 CML GT10.48380.96761.45141.93522.419SE +/- 0.01, N = 32.151. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 610 CML GT12004006008001000SE +/- 8.41, N = 3941.81MIN: 825.86 / MAX: 990.851. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 610 CML GT10.4770.9541.4311.9082.385SE +/- 0.02, N = 32.121. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.03, N = 3119.47MIN: 90.68 / MAX: 145.721. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.01, N = 316.741. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 610 CML GT150100150200250SE +/- 0.25, N = 3238.38MIN: 230.11 / MAX: 256.021. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 610 CML GT1246810SE +/- 0.01, N = 38.391. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

Model: NASNet Mobile

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet MobileIntel UHD 610 CML GT19K18K27K36K45KSE +/- 77.05, N = 341500.3

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.32, N = 3125.63MIN: 81.99 / MAX: 143.871. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.04, N = 315.911. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 610 CML GT14080120160200SE +/- 0.21, N = 3158.68MIN: 99.47 / MAX: 177.311. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 610 CML GT13691215SE +/- 0.02, N = 312.601. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

TensorFlow Lite

Model: Mobilenet Float

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet FloatIntel UHD 610 CML GT15K10K15K20K25KSE +/- 36.79, N = 322665.5

TensorFlow Lite

Model: SqueezeNet

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetIntel UHD 610 CML GT17K14K21K28K35KSE +/- 65.07, N = 331464.6

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT11326395265SE +/- 0.04, N = 359.63MIN: 33.23 / MAX: 73.951. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT1816243240SE +/- 0.02, N = 333.531. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.01, N = 3120.87MIN: 100.98 / MAX: 135.071. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.00, N = 316.541. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 610 CML GT1306090120150SE +/- 0.04, N = 3128.29MIN: 74.44 / MAX: 146.591. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 610 CML GT148121620SE +/- 0.01, N = 315.581. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 610 CML GT1510152025SE +/- 0.02, N = 318.84MIN: 11.22 / MAX: 33.211. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 610 CML GT120406080100SE +/- 0.10, N = 3106.111. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 338.50MIN: 21.89 / MAX: 52.211. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 610 CML GT11224364860SE +/- 0.01, N = 351.931. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 610 CML GT1918273645SE +/- 0.04, N = 338.92MIN: 22.17 / MAX: 55.681. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 610 CML GT11224364860SE +/- 0.06, N = 351.361. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 610 CML GT10.8911.7822.6733.5644.455SE +/- 0.01, N = 33.96MIN: 2.43 / MAX: 19.951. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 610 CML GT1110220330440550SE +/- 0.61, N = 3504.021. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 610 CML GT10.34430.68861.03291.37721.7215SE +/- 0.00, N = 31.53MIN: 0.88 / MAX: 18.361. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 610 CML GT130060090012001500SE +/- 1.99, N = 31300.471. (CXX) g++ options: -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -pie -pthread

Scikit-Learn

Benchmark: Hist Gradient Boosting Categorical Only

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical OnlyIntel UHD 610 CML GT1714212835SE +/- 0.05, N = 327.721. (F9X) gfortran options: -O0

R Benchmark

OpenBenchmarking.orgSeconds, Fewer Is BetterR BenchmarkIntel UHD 610 CML GT10.08040.16080.24120.32160.402SE +/- 0.0004, N = 30.35721. R scripting front-end version 3.6.3 (2020-02-29)

Numenta Anomaly Benchmark

Detector: Windowed Gaussian

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianIntel UHD 610 CML GT1816243240SE +/- 0.03, N = 334.11

Mlpack Benchmark

Benchmark: scikit_svm

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmIntel UHD 610 CML GT1714212835SE +/- 0.02, N = 327.75

RNNoise

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28Intel UHD 610 CML GT1612182430SE +/- 0.08, N = 327.001. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

TNN

Target: CPU - Model: MobileNet v2

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: MobileNet v2Intel UHD 610 CML GT180160240320400SE +/- 0.14, N = 3374.72MIN: 373.05 / MAX: 386.671. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

TNN

Target: CPU - Model: SqueezeNet v1.1

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v1.1Intel UHD 610 CML GT170140210280350SE +/- 0.04, N = 3335.26MIN: 334.98 / MAX: 336.551. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT120406080100SE +/- 0.25, N = 378.29MIN: 75.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT1510152025SE +/- 0.05, N = 319.79MIN: 19.521. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT1918273645SE +/- 0.01, N = 337.76MIN: 37.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT13691215SE +/- 0.02, N = 312.28MIN: 12.131. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT1918273645SE +/- 0.09, N = 338.02MIN: 37.161. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT11.32962.65923.98885.31846.648SE +/- 0.01192, N = 35.90947MIN: 5.661. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT11326395265SE +/- 0.07, N = 360.25MIN: 59.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT11122334455SE +/- 0.20, N = 348.78MIN: 47.031. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

TNN

Target: CPU - Model: SqueezeNet v2

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v2Intel UHD 610 CML GT120406080100SE +/- 0.28, N = 375.16MIN: 74.69 / MAX: 79.561. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUIntel UHD 610 CML GT120406080100SE +/- 0.12, N = 392.42MIN: 89.591. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUIntel UHD 610 CML GT1612182430SE +/- 0.03, N = 326.95MIN: 26.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl


Phoronix Test Suite v10.8.5