Machine Learning
The machine learning test suite helps to benchmark a system for the popular pattern recognition and computational learning algorithms. Mainly different machine learning / deep learning benchmarks.
See how your system performs with this suite using the Phoronix Test Suite. It's as easy as running the phoronix-test-suite benchmark machine-learning command..
Tests In This Suite
- Model: AlexNet - Acceleration: CPU - Iterations: 100
- Model: AlexNet - Acceleration: CPU - Iterations: 200
- Model: AlexNet - Acceleration: CPU - Iterations: 1000
- Model: GoogleNet - Acceleration: CPU - Iterations: 100
- Model: GoogleNet - Acceleration: CPU - Iterations: 200
- Model: GoogleNet - Acceleration: CPU - Iterations: 1000
- Acceleration: CPU
- Benchmark: P1B2
- Benchmark: P3B1
- Benchmark: P3B2
- Backend: BLAS
- Model: Mobilenet Float
- Model: Mobilenet Quant
- Model: NASNet Mobile
- Model: SqueezeNet
- Model: Inception ResNet V2
- Model: Inception V4
- Model: Quantized COCO SSD MobileNet v1
- Model: DeepLab V3
- Model: llama-2-7b.Q4_0.gguf
- Model: llama-2-13b.Q4_0.gguf
- Model: llama-2-70b-chat.Q5_0.gguf
- Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU
- Test: llava-v1.5-7b-q4 - Acceleration: CPU
- Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU
- Benchmark: scikit_svm
- Benchmark: scikit_linearridgeregression
- Benchmark: scikit_qda
- Benchmark: scikit_ica
- Target: CPU
- Target: Vulkan GPU
- Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
- Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
- Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
- Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
- Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
- Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
- Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
- Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
- Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
- Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
- Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
- Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
- Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
- Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
- Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
- Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
- Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
- Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
- Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
- Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
- Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream
- Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream
- Detector: Bayesian Changepoint
- Detector: Windowed Gaussian
- Detector: Relative Entropy
- Detector: Earthgecko Skyline
- Detector: KNN CAD
- Detector: Contextual Anomaly Detector OSE
- Harness: Convolution Batch Shapes Auto - Engine: CPU
- Harness: Deconvolution Batch shapes_1d - Engine: CPU
- Harness: Deconvolution Batch shapes_3d - Engine: CPU
- Harness: IP Shapes 1D - Engine: CPU
- Harness: IP Shapes 3D - Engine: CPU
- Harness: Recurrent Neural Network Training - Engine: CPU
- Harness: Recurrent Neural Network Inference - Engine: CPU
- Model: yolov4 - Device: CPU - Executor: Standard
- Model: yolov4 - Device: CPU - Executor: Parallel
- Model: fcn-resnet101-11 - Device: CPU - Executor: Standard
- Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel
- Model: super-resolution-10 - Device: CPU - Executor: Standard
- Model: super-resolution-10 - Device: CPU - Executor: Parallel
- Model: bertsquad-12 - Device: CPU - Executor: Standard
- Model: bertsquad-12 - Device: CPU - Executor: Parallel
- Model: GPT-2 - Device: CPU - Executor: Standard
- Model: GPT-2 - Device: CPU - Executor: Parallel
- Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard
- Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel
- Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard
- Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel
- Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard
- Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel
- Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard
- Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel
- Model: T5 Encoder - Device: CPU - Executor: Standard
- Model: T5 Encoder - Device: CPU - Executor: Parallel
- Model: ZFNet-512 - Device: CPU - Executor: Standard
- Model: ZFNet-512 - Device: CPU - Executor: Parallel
- Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard
- Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel
- Test: DNN - Deep Neural Network
- Model: Face Detection FP16 - Device: CPU
- Model: Face Detection FP16-INT8 - Device: CPU
- Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU
- Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU
- Model: Person Detection FP16 - Device: CPU
- Model: Person Detection FP32 - Device: CPU
- Model: Weld Porosity Detection FP16-INT8 - Device: CPU
- Model: Weld Porosity Detection FP16 - Device: CPU
- Model: Vehicle Detection FP16-INT8 - Device: CPU
- Model: Vehicle Detection FP16 - Device: CPU
- Model: Person Vehicle Bike Detection FP16 - Device: CPU
- Model: Machine Translation EN To DE FP16 - Device: CPU
- Model: Face Detection Retail FP16 - Device: CPU
- Model: Face Detection Retail FP16-INT8 - Device: CPU
- Model: Handwritten English Recognition FP16 - Device: CPU
- Model: Handwritten English Recognition FP16-INT8 - Device: CPU
- Model: Road Segmentation ADAS FP16 - Device: CPU
- Model: Road Segmentation ADAS FP16-INT8 - Device: CPU
- Model: Person Re-Identification Retail FP16 - Device: CPU
- Model: Noise Suppression Poconet-Like FP16 - Device: CPU
- Model: TinyLlama-1.1B-Chat-v1.0 - Device: CPU
- Model: Phi-3-mini-128k-instruct-int4-ov - Device: CPU
- Model: Falcon-7b-instruct-int4-ov - Device: CPU
- Model: Gemma-7b-int4-ov - Device: CPU
- FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU
- FP16: No - Mode: Inference - Network: VGG16 - Device: CPU
- Device: CPU - Batch Size: 1 - Model: ResNet-50
- Device: CPU - Batch Size: 1 - Model: ResNet-152
- Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l
- Device: CPU - Batch Size: 16 - Model: ResNet-50
- Device: CPU - Batch Size: 16 - Model: ResNet-152
- Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l
- Device: CPU - Batch Size: 32 - Model: ResNet-50
- Device: CPU - Batch Size: 32 - Model: ResNet-152
- Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l
- Device: CPU - Batch Size: 64 - Model: ResNet-50
- Device: CPU - Batch Size: 64 - Model: ResNet-152
- Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l
- Device: CPU - Batch Size: 256 - Model: ResNet-50
- Device: CPU - Batch Size: 256 - Model: ResNet-152
- Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l
- Device: CPU - Batch Size: 512 - Model: ResNet-50
- Device: CPU - Batch Size: 512 - Model: ResNet-152
- Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_l
- Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50
- Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152
- Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_l
- Input: 26 Minute Long Talking Sample
- Benchmark: 20 Newsgroups / Logistic Regression
- Benchmark: Covertype Dataset Benchmark
- Benchmark: Feature Expansions
- Benchmark: GLM
- Benchmark: Glmnet
- Benchmark: Hist Gradient Boosting
- Benchmark: Hist Gradient Boosting Adult
- Benchmark: Hist Gradient Boosting Categorical Only
- Benchmark: Hist Gradient Boosting Higgs Boson
- Benchmark: Hist Gradient Boosting Threading
- Benchmark: Isolation Forest
- Benchmark: Isotonic / Perturbed Logarithm
- Benchmark: Isotonic / Logistic
- Benchmark: Isotonic / Pathological
- Benchmark: Kernel PCA Solvers / Time vs. N Components
- Benchmark: Kernel PCA Solvers / Time vs. N Samples
- Benchmark: Lasso
- Benchmark: LocalOutlierFactor
- Benchmark: SGDOneClassSVM
- Benchmark: Plot Fast KMeans
- Benchmark: Plot Hierarchical
- Benchmark: Plot Incremental PCA
- Benchmark: Plot Lasso Path
- Benchmark: Plot Neighbors
- Benchmark: Plot Non-Negative Matrix Factorization
- Benchmark: Plot OMP vs. LARS
- Benchmark: Plot Parallel Pairwise
- Benchmark: Plot Polynomial Kernel Approximation
- Benchmark: Plot Singular Value Decomposition
- Benchmark: Plot Ward
- Benchmark: Sparse Random Projections / 100 Iterations
- Benchmark: RCV1 Logreg Convergencet
- Benchmark: SAGA
- Benchmark: Sample Without Replacement
- Benchmark: SGD Regression
- Benchmark: Sparsify
- Benchmark: Text Vectorizers
- Benchmark: Tree
- Benchmark: MNIST Dataset
- Benchmark: TSNE MNIST Dataset
- Target: OpenCL - Benchmark: Bus Speed Download
- Target: OpenCL - Benchmark: Bus Speed Readback
- Target: OpenCL - Benchmark: Max SP Flops
- Target: OpenCL - Benchmark: Texture Read Bandwidth
- Target: OpenCL - Benchmark: FFT SP
- Target: OpenCL - Benchmark: GEMM SGEMM_N
- Target: OpenCL - Benchmark: MD5 Hash
- Target: OpenCL - Benchmark: Reduction
- Target: OpenCL - Benchmark: Triad
- Target: OpenCL - Benchmark: S3D
- Device: CPU - Batch Size: 1 - Model: VGG-16
- Device: CPU - Batch Size: 1 - Model: ResNet-50
- Device: CPU - Batch Size: 1 - Model: AlexNet
- Device: CPU - Batch Size: 1 - Model: GoogLeNet
- Device: CPU - Batch Size: 16 - Model: VGG-16
- Device: CPU - Batch Size: 16 - Model: ResNet-50
- Device: CPU - Batch Size: 16 - Model: AlexNet
- Device: CPU - Batch Size: 16 - Model: GoogLeNet
- Device: CPU - Batch Size: 32 - Model: VGG-16
- Device: CPU - Batch Size: 32 - Model: ResNet-50
- Device: CPU - Batch Size: 32 - Model: AlexNet
- Device: CPU - Batch Size: 32 - Model: GoogLeNet
- Device: CPU - Batch Size: 64 - Model: VGG-16
- Device: CPU - Batch Size: 64 - Model: ResNet-50
- Device: CPU - Batch Size: 64 - Model: AlexNet
- Device: CPU - Batch Size: 64 - Model: GoogLeNet
- Device: CPU - Batch Size: 256 - Model: VGG-16
- Device: CPU - Batch Size: 256 - Model: ResNet-50
- Device: CPU - Batch Size: 256 - Model: AlexNet
- Device: CPU - Batch Size: 256 - Model: GoogLeNet
- Device: CPU - Batch Size: 512 - Model: VGG-16
- Device: CPU - Batch Size: 512 - Model: ResNet-50
- Device: CPU - Batch Size: 512 - Model: AlexNet
- Device: CPU - Batch Size: 512 - Model: GoogLeNet
- Device: GPU - Batch Size: 1 - Model: VGG-16
- Device: GPU - Batch Size: 1 - Model: ResNet-50
- Device: GPU - Batch Size: 1 - Model: AlexNet
- Device: GPU - Batch Size: 1 - Model: GoogLeNet
- Device: GPU - Batch Size: 16 - Model: VGG-16
- Device: GPU - Batch Size: 16 - Model: ResNet-50
- Device: GPU - Batch Size: 16 - Model: AlexNet
- Device: GPU - Batch Size: 16 - Model: GoogLeNet
- Device: GPU - Batch Size: 32 - Model: VGG-16
- Device: GPU - Batch Size: 32 - Model: ResNet-50
- Device: GPU - Batch Size: 32 - Model: AlexNet
- Device: GPU - Batch Size: 32 - Model: GoogLeNet
- Device: GPU - Batch Size: 64 - Model: VGG-16
- Device: GPU - Batch Size: 64 - Model: ResNet-50
- Device: GPU - Batch Size: 64 - Model: AlexNet
- Device: GPU - Batch Size: 64 - Model: GoogLeNet
- Device: GPU - Batch Size: 256 - Model: VGG-16
- Device: GPU - Batch Size: 256 - Model: ResNet-50
- Device: GPU - Batch Size: 256 - Model: AlexNet
- Device: GPU - Batch Size: 256 - Model: GoogLeNet
- Device: GPU - Batch Size: 512 - Model: VGG-16
- Device: GPU - Batch Size: 512 - Model: ResNet-50
- Device: GPU - Batch Size: 512 - Model: AlexNet
- Device: GPU - Batch Size: 512 - Model: GoogLeNet
- Model: Mobilenet Float
- Model: Mobilenet Quant
- Model: NASNet Mobile
- Model: SqueezeNet
- Model: Inception ResNet V2
- Model: Inception V4
- Target: CPU - Model: DenseNet
- Target: CPU - Model: MobileNet v2
- Target: CPU - Model: SqueezeNet v1.1
- Target: CPU - Model: SqueezeNet v2
- Model: ggml-base.en - Input: 2016 State of the Union
- Model: ggml-small.en - Input: 2016 State of the Union
- Model: ggml-medium.en - Input: 2016 State of the Union
- Model Size: Tiny
- Model Size: Small
- Model Size: Medium
Revision History
pts/machine-learning-1.3.13 Sun, 24 Nov 2024 10:53:53 GMT
Add openvino-genai and LiteRT to machine learning test suite.
pts/machine-learning-1.3.10 Thu, 22 Aug 2024 07:04:08 GMT
Add Whisperfile to suite.
pts/machine-learning-1.3.9 Sun, 11 Aug 2024 14:18:46 GMT
Add xnnpack to machine learning test suite.
pts/machine-learning-1.3.8 Sat, 27 Jan 2024 19:46:48 GMT
Add large language models (llm) test suite.
pts/machine-learning-1.3.7 Fri, 17 Nov 2023 12:28:41 GMT
Add PyTorch to machine learning test suite.
pts/machine-learning-1.3.6 Sun, 06 Aug 2023 17:01:03 GMT
Add whisper-cpp to test suite.
pts/machine-learning-1.3.5 Thu, 13 Oct 2022 16:46:06 GMT
Add DeepSparse to ML test suite.
pts/machine-learning-1.3.4 Fri, 07 Oct 2022 19:12:01 GMT
Add pts/spacy (spaCy) to suite.
pts/machine-learning-1.3.3 Sun, 17 Jan 2021 07:57:25 GMT
Add ONNX to machine learning syite.
pts/machine-learning-1.3.2 Thu, 14 Jan 2021 14:01:03 GMT
Add ecp-candle to suite.
pts/machine-learning-1.3.1 Thu, 08 Oct 2020 09:23:48 GMT
Add OpenVINO to suite.
pts/machine-learning-1.3.0 Sun, 04 Oct 2020 13:02:02 GMT
Add OpenCV, TNN, Caffe, and other updates.
pts/machine-learning-1.2.10 Tue, 22 Sep 2020 18:11:26 GMT
Add OpenCV DNN test to machine-learning suite.
pts/machine-learning-1.2.9 Sat, 19 Sep 2020 12:54:40 GMT
Add NCNN to test suite.
pts/machine-learning-1.2.8 Thu, 17 Sep 2020 20:58:30 GMT
Add Alibaba Mobile Neural Network (mnn) test profile.
pts/machine-learning-1.2.7 Sun, 23 Aug 2020 14:17:27 GMT
Add tensorflow-lite test profile.
pts/machine-learning-1.2.6 Wed, 08 Jul 2020 14:28:35 GMT
Add ai-benchmark test profile to machine learning test suite.
pts/machine-learning-1.2.5 Wed, 17 Jun 2020 16:35:07 GMT
Use pts/onednn rather than pts/mkl-dnn due to rename.
pts/machine-learning-1.2.4 Thu, 28 May 2020 15:51:26 GMT
Add additional tests.
pts/machine-learning-1.2.3 Wed, 08 Apr 2020 16:21:57 GMT
Add tensorflow.
pts/machine-learning-1.2.2 Wed, 08 Apr 2020 14:00:00 GMT
Add numenta-nab and deepspeech to test suite.
pts/machine-learning-1.2.1 Mon, 24 Feb 2020 09:14:07 GMT
Update machine-learning test suite with batch mode for mlpack given its new options just added.
pts/machine-learning-1.2.0 Sun, 16 Feb 2020 19:07:13 GMT
Add more tests.
pts/machine-learning-1.1.0 Fri, 10 May 2019 15:47:23 GMT
Update tests.
pts/machine-learning-1.0.0 Mon, 01 Aug 2016 16:30:43 GMT
Initial commit