3300X New

AMD Ryzen 3 3300X 4-Core testing with a MSI B350M GAMING PRO (MS-7A39) v1.0 (2.NR BIOS) and AMD FirePro V3800 512MB on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2009280-FI-3300XNEW187
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
1
September 27 2020
  4 Hours, 36 Minutes
2
September 28 2020
  5 Hours, 9 Minutes
3
September 28 2020
  3 Hours, 39 Minutes
Invert Behavior (Only Show Selected Data)
  4 Hours, 28 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


3300X NewProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen Resolution123AMD Ryzen 3 3300X 4-Core @ 3.80GHz (4 Cores / 8 Threads)MSI B350M GAMING PRO (MS-7A39) v1.0 (2.NR BIOS)AMD Starship/Matisse8GB256GB INTEL SSDPEKKW256G7AMD FirePro V3800 512MBAMD Redwood HDMI AudioVA2431Realtek RTL8111/8168/8411Ubuntu 20.045.9.0-rc5-14sep-patch (x86_64) 20200914GNOME Shell 3.36.4X Server 1.20.8modesetting 1.20.83.3 Mesa 20.0.8 (LLVM 10.0.0)GCC 9.3.0ext41920x1080OpenBenchmarking.orgCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: acpi-cpufreq ondemand - CPU Microcode: 0x8701021Python Details- Python 3.8.2Security Details- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected

123Result OverviewPhoronix Test Suite100%102%104%107%109%OpenCVLeelaChessZeroBYTE Unix BenchmarkeSpeak-NG Speech EngineApache CouchDBGROMACSInfluxDBLibRawFFTENCNNTimed HMMer SearchTNNWebP Image EncodeNAMDDolfynHierarchical INTegrationMlpack BenchmarkMPVCaffe

3300X Newlczero: BLASncnn: CPU - blazefacencnn: CPU - mnasnetncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU - alexnetncnn: CPU-v2-v2 - mobilenet-v2byte: Dhrystone 2ncnn: CPU - efficientnet-b0influxdb: 4 - 10000 - 2,5000,1 - 10000espeak: Text-To-Speech Synthesismlpack: scikit_icamlpack: scikit_qdawebp: Quality 100, Lossless, Highest Compressionncnn: CPU - mobilenetncnn: CPU - googlenetcouchdb: 100 - 1000 - 24caffe: AlexNet - CPU - 200ncnn: CPU - yolov4-tinygromacs: Water Benchmarkncnn: CPU - squeezenettnn: CPU - SqueezeNet v1.1webp: Quality 100, Losslessncnn: CPU - resnet50mlpack: scikit_linearridgeregressioncaffe: AlexNet - CPU - 100ncnn: CPU - shufflenet-v2libraw: Post-Processing Benchmarkcaffe: GoogleNet - CPU - 200ffte: N=256, 3D Complex FFT Routinehmmer: Pfam Database Searchmlpack: scikit_svmncnn: CPU - vgg16webp: Defaultwebp: Quality 100, Highest Compressioninfluxdb: 1024 - 10000 - 2,5000,1 - 10000namd: ATPase Simulation - 327,506 Atomsdolfyn: Computational Fluid Dynamicslczero: Randwebp: Quality 100mpv: Big Buck Bunny Sunflower 4K - Software Onlyncnn: CPU - resnet18influxdb: 64 - 10000 - 2,5000,1 - 10000tnn: CPU - MobileNet v2caffe: GoogleNet - CPU - 100mpv: Big Buck Bunny Sunflower 1080p - Software Onlyhint: FLOATopencv: DNN - Deep Neural Networklczero: Eigen1236881.475.054.8617.925.3946642879.67.661148083.728.14453.3566.4234.08820.8916.91112.6717572729.700.55919.81240.73316.05433.843.04378543.2030.7419725225965.398717751103.71019.4070.041.4726.9671235812.24.3107516.3342279202.243175.5916.571215926.1250.39498610319.43379856539.7832940796656661.525.044.7618.365.5146044154.47.661154741.028.46353.2366.7533.93121.1316.84112.8087642329.870.55519.89238.70615.94034.083.02381043.1830.8819846225833.142501909103.49519.4970.331.4696.9801234016.64.3060716.3362273892.248175.9516.541214667.8249.96298759319.12379820315.5664342877127911.524.904.7418.085.4345708214.77.811135241.128.61853.9965.9034.36820.9417.02113.8367569929.970.56019.72239.05516.07333.853.03379073.1830.6919795525987.237961360104.01319.4470.271.4756.9551231834.84.3186516.3732277212.244175.7516.571213725.5250.39098742319.18380134502.202034287734OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.26Backend: BLAS3122004006008001000SE +/- 2.08, N = 3SE +/- 7.18, N = 8SE +/- 7.06, N = 87916886661. (CXX) g++ options: -flto -pthread

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: blazeface1230.3420.6841.0261.3681.71SE +/- 0.04, N = 3SE +/- 0.03, N = 3SE +/- 0.03, N = 31.471.521.52MIN: 1.38 / MAX: 1.56MIN: 1.45 / MAX: 1.57MIN: 1.44 / MAX: 1.571. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: mnasnet3211.13632.27263.40894.54525.6815SE +/- 0.02, N = 3SE +/- 0.14, N = 3SE +/- 0.07, N = 34.905.045.05MIN: 4.82 / MAX: 5.74MIN: 4.82 / MAX: 73.28MIN: 4.7 / MAX: 71.141. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU-v3-v3 - Model: mobilenet-v33211.09352.1873.28054.3745.4675SE +/- 0.01, N = 3SE +/- 0.03, N = 3SE +/- 0.12, N = 34.744.764.86MIN: 4.66 / MAX: 5.95MIN: 4.67 / MAX: 9.58MIN: 4.67 / MAX: 70.141. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: alexnet132510152025SE +/- 0.03, N = 3SE +/- 0.11, N = 3SE +/- 0.14, N = 317.9218.0818.36MIN: 17.79 / MAX: 19.18MIN: 17.84 / MAX: 65.83MIN: 17.99 / MAX: 81.761. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU-v2-v2 - Model: mobilenet-v21321.23982.47963.71944.95926.199SE +/- 0.02, N = 3SE +/- 0.08, N = 3SE +/- 0.16, N = 35.395.435.51MIN: 5.26 / MAX: 15.94MIN: 5.25 / MAX: 6.71MIN: 5.25 / MAX: 70.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

BYTE Unix Benchmark

This is a test of BYTE. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgLPS, More Is BetterBYTE Unix Benchmark 3.6Computational Test: Dhrystone 212310M20M30M40M50MSE +/- 111506.75, N = 3SE +/- 536167.24, N = 3SE +/- 334020.32, N = 346642879.646044154.445708214.7

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: efficientnet-b0123246810SE +/- 0.09, N = 3SE +/- 0.09, N = 3SE +/- 0.12, N = 37.667.667.81MIN: 7.42 / MAX: 8.79MIN: 7.43 / MAX: 9.07MIN: 7.44 / MAX: 73.751. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

InfluxDB

This is a benchmark of the InfluxDB open-source time-series database optimized for fast, high-availability storage for IoT and other use-cases. The InfluxDB test profile makes use of InfluxDB Inch for facilitating the benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgval/sec, More Is BetterInfluxDB 1.8.2Concurrent Streams: 4 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000213200K400K600K800K1000KSE +/- 910.58, N = 3SE +/- 14015.74, N = 3SE +/- 18997.93, N = 31154741.01148083.71135241.1

eSpeak-NG Speech Engine

This test times how long it takes the eSpeak speech synthesizer to read Project Gutenberg's The Outline of Science and output to a WAV file. This test profile is now tracking the eSpeak-NG version of eSpeak. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereSpeak-NG Speech Engine 20200907Text-To-Speech Synthesis123714212835SE +/- 0.24, N = 4SE +/- 0.09, N = 4SE +/- 0.14, N = 428.1428.4628.621. (CC) gcc options: -O2 -std=c99

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_ica2131224364860SE +/- 0.23, N = 3SE +/- 0.40, N = 3SE +/- 0.30, N = 353.2353.3553.99

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qda3121530456075SE +/- 0.47, N = 3SE +/- 0.90, N = 3SE +/- 0.72, N = 1565.9066.4266.75

WebP Image Encode

This is a test of Google's libwebp with the cwebp image encode utility and using a sample 6000x4000 pixel JPEG image as the input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgEncode Time - Seconds, Fewer Is BetterWebP Image Encode 1.1Encode Settings: Quality 100, Lossless, Highest Compression213816243240SE +/- 0.12, N = 3SE +/- 0.04, N = 3SE +/- 0.11, N = 333.9334.0934.371. (CC) gcc options: -fvisibility=hidden -O2 -pthread -lm -ljpeg -lpng16 -ltiff

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: mobilenet132510152025SE +/- 0.19, N = 3SE +/- 0.03, N = 3SE +/- 0.09, N = 320.8920.9421.13MIN: 20.34 / MAX: 79.79MIN: 20.27 / MAX: 87.66MIN: 20.6 / MAX: 135.511. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: googlenet21348121620SE +/- 0.06, N = 3SE +/- 0.17, N = 3SE +/- 0.09, N = 316.8416.9117.02MIN: 16.59 / MAX: 26.56MIN: 16.56 / MAX: 85.29MIN: 16.76 / MAX: 84.981. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

Apache CouchDB

This is a bulk insertion benchmark of Apache CouchDB. CouchDB is a document-oriented NoSQL database implemented in Erlang. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterApache CouchDB 3.1.1Bulk Size: 100 - Inserts: 1000 - Rounds: 24123306090120150SE +/- 0.76, N = 3SE +/- 1.07, N = 3SE +/- 0.89, N = 3112.67112.81113.841. (CXX) g++ options: -std=c++14 -lmozjs-68 -lm -lerl_interface -lei -fPIC -MMD

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 20031216K32K48K64K80KSE +/- 69.34, N = 3SE +/- 7.42, N = 3SE +/- 119.56, N = 37569975727764231. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: yolov4-tiny123714212835SE +/- 0.15, N = 3SE +/- 0.15, N = 3SE +/- 0.11, N = 329.7029.8729.97MIN: 29.36 / MAX: 102.28MIN: 29.61 / MAX: 94.06MIN: 29.43 / MAX: 96.481. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

GROMACS

The GROMACS (GROningen MAchine for Chemical Simulations) molecular dynamics package testing on the CPU with the water_GMX50 data. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNs Per Day, More Is BetterGROMACS 2020.3Water Benchmark3120.1260.2520.3780.5040.63SE +/- 0.001, N = 3SE +/- 0.001, N = 3SE +/- 0.001, N = 30.5600.5590.5551. (CXX) g++ options: -O3 -pthread -lrt -lpthread -lm

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: squeezenet312510152025SE +/- 0.02, N = 3SE +/- 0.10, N = 3SE +/- 0.12, N = 319.7219.8119.89MIN: 19.22 / MAX: 87.62MIN: 19.45 / MAX: 84.09MIN: 19.59 / MAX: 85.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.2.3Target: CPU - Model: SqueezeNet v1.123150100150200250SE +/- 0.74, N = 3SE +/- 0.70, N = 3SE +/- 0.21, N = 3238.71239.06240.73MIN: 235.48 / MAX: 249.9MIN: 235.94 / MAX: 247.97MIN: 237.48 / MAX: 242.431. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -O3 -rdynamic -ldl

WebP Image Encode

This is a test of Google's libwebp with the cwebp image encode utility and using a sample 6000x4000 pixel JPEG image as the input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgEncode Time - Seconds, Fewer Is BetterWebP Image Encode 1.1Encode Settings: Quality 100, Lossless21348121620SE +/- 0.11, N = 3SE +/- 0.15, N = 3SE +/- 0.12, N = 315.9416.0516.071. (CC) gcc options: -fvisibility=hidden -O2 -pthread -lm -ljpeg -lpng16 -ltiff

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: resnet50132816243240SE +/- 0.12, N = 3SE +/- 0.08, N = 3SE +/- 0.06, N = 333.8433.8534.08MIN: 33.48 / MAX: 101.31MIN: 33.37 / MAX: 101.78MIN: 33.69 / MAX: 102.011. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregression2310.6841.3682.0522.7363.42SE +/- 0.01, N = 3SE +/- 0.02, N = 3SE +/- 0.02, N = 33.023.033.04

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1001328K16K24K32K40KSE +/- 59.95, N = 3SE +/- 73.17, N = 3SE +/- 61.07, N = 33785437907381041. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: shufflenet-v22310.721.442.162.883.6SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.01, N = 33.183.183.20MIN: 3.15 / MAX: 4.42MIN: 3.15 / MAX: 4.34MIN: 3.16 / MAX: 4.321. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

LibRaw

LibRaw is a RAW image decoder for digital camera photos. This test profile runs LibRaw's post-processing benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMpix/sec, More Is BetterLibRaw 0.20Post-Processing Benchmark213714212835SE +/- 0.08, N = 3SE +/- 0.07, N = 3SE +/- 0.03, N = 330.8830.7430.691. (CXX) g++ options: -O2 -fopenmp -ljpeg -lz -lm

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 20013240K80K120K160K200KSE +/- 139.14, N = 3SE +/- 171.89, N = 3SE +/- 64.09, N = 31972521979551984621. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

FFTE

OpenBenchmarking.orgMFLOPS, More Is BetterFFTE 7.0N=256, 3D Complex FFT Routine3126K12K18K24K30KSE +/- 32.59, N = 3SE +/- 190.92, N = 3SE +/- 59.58, N = 325987.2425965.4025833.141. (F9X) gfortran options: -O3 -fomit-frame-pointer -fopenmp

Timed HMMer Search

This test searches through the Pfam database of profile hidden markov models. The search finds the domain structure of Drosophila Sevenless protein. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed HMMer Search 3.3.1Pfam Database Search21320406080100SE +/- 0.28, N = 3SE +/- 0.09, N = 3SE +/- 0.21, N = 3103.50103.71104.011. (CC) gcc options: -O3 -pthread -lhmmer -leasel -lm

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svm132510152025SE +/- 0.05, N = 3SE +/- 0.04, N = 3SE +/- 0.06, N = 319.4019.4419.49

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: vgg161321632486480SE +/- 0.14, N = 3SE +/- 0.13, N = 3SE +/- 0.08, N = 370.0470.2770.33MIN: 69.21 / MAX: 134.99MIN: 69.43 / MAX: 137.61MIN: 69.45 / MAX: 145.441. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

WebP Image Encode

This is a test of Google's libwebp with the cwebp image encode utility and using a sample 6000x4000 pixel JPEG image as the input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgEncode Time - Seconds, Fewer Is BetterWebP Image Encode 1.1Encode Settings: Default2130.33190.66380.99571.32761.6595SE +/- 0.004, N = 3SE +/- 0.003, N = 3SE +/- 0.004, N = 31.4691.4721.4751. (CC) gcc options: -fvisibility=hidden -O2 -pthread -lm -ljpeg -lpng16 -ltiff

OpenBenchmarking.orgEncode Time - Seconds, Fewer Is BetterWebP Image Encode 1.1Encode Settings: Quality 100, Highest Compression312246810SE +/- 0.006, N = 3SE +/- 0.011, N = 3SE +/- 0.022, N = 36.9556.9676.9801. (CC) gcc options: -fvisibility=hidden -O2 -pthread -lm -ljpeg -lpng16 -ltiff

InfluxDB

This is a benchmark of the InfluxDB open-source time-series database optimized for fast, high-availability storage for IoT and other use-cases. The InfluxDB test profile makes use of InfluxDB Inch for facilitating the benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgval/sec, More Is BetterInfluxDB 1.8.2Concurrent Streams: 1024 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000123300K600K900K1200K1500KSE +/- 569.40, N = 3SE +/- 2518.88, N = 3SE +/- 3050.85, N = 31235812.21234016.61231834.8

NAMD

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgdays/ns, Fewer Is BetterNAMD 2.14ATPase Simulation - 327,506 Atoms2130.97171.94342.91513.88684.8585SE +/- 0.00237, N = 3SE +/- 0.00138, N = 3SE +/- 0.00476, N = 34.306074.310754.31865

Dolfyn

Dolfyn is a Computational Fluid Dynamics (CFD) code of modern numerical simulation techniques. The Dolfyn test profile measures the execution time of the bundled computational fluid dynamics demos that are bundled with Dolfyn. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDolfyn 0.527Computational Fluid Dynamics12348121620SE +/- 0.06, N = 3SE +/- 0.06, N = 3SE +/- 0.06, N = 316.3316.3416.37

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.26Backend: Random13250K100K150K200K250KSE +/- 149.15, N = 3SE +/- 278.97, N = 3SE +/- 250.79, N = 32279202277212273891. (CXX) g++ options: -flto -pthread

WebP Image Encode

This is a test of Google's libwebp with the cwebp image encode utility and using a sample 6000x4000 pixel JPEG image as the input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgEncode Time - Seconds, Fewer Is BetterWebP Image Encode 1.1Encode Settings: Quality 1001320.50581.01161.51742.02322.529SE +/- 0.006, N = 3SE +/- 0.010, N = 3SE +/- 0.006, N = 32.2432.2442.2481. (CC) gcc options: -fvisibility=hidden -O2 -pthread -lm -ljpeg -lpng16 -ltiff

MPV

MPV is an open-source, cross-platform media player. This test profile tests the frame-rate that can be achieved unsynchronized in a desynchronized mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterMPVVideo Input: Big Buck Bunny Sunflower 4K - Decode: Software Only2314080120160200SE +/- 0.24, N = 3SE +/- 0.08, N = 3SE +/- 0.05, N = 3175.95175.75175.59MIN: 162.18 / MAX: 181.84MIN: 162.18 / MAX: 181.84MIN: 160.02 / MAX: 181.841. mpv 0.32.0

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: resnet1821348121620SE +/- 0.01, N = 3SE +/- 0.10, N = 3SE +/- 0.13, N = 316.5416.5716.57MIN: 16.46 / MAX: 17.25MIN: 16.36 / MAX: 81.22MIN: 16.33 / MAX: 84.41. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

InfluxDB

This is a benchmark of the InfluxDB open-source time-series database optimized for fast, high-availability storage for IoT and other use-cases. The InfluxDB test profile makes use of InfluxDB Inch for facilitating the benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgval/sec, More Is BetterInfluxDB 1.8.2Concurrent Streams: 64 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000123300K600K900K1200K1500KSE +/- 445.95, N = 3SE +/- 837.81, N = 3SE +/- 2005.21, N = 31215926.11214667.81213725.5

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.2.3Target: CPU - Model: MobileNet v223150100150200250SE +/- 1.39, N = 3SE +/- 0.82, N = 3SE +/- 0.95, N = 3249.96250.39250.39MIN: 246.61 / MAX: 282.57MIN: 247.08 / MAX: 280.65MIN: 247.95 / MAX: 288.331. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -O3 -rdynamic -ldl

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 10013220K40K60K80K100KSE +/- 53.78, N = 3SE +/- 239.08, N = 3SE +/- 74.51, N = 39861098742987591. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

MPV

MPV is an open-source, cross-platform media player. This test profile tests the frame-rate that can be achieved unsynchronized in a desynchronized mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterMPVVideo Input: Big Buck Bunny Sunflower 1080p - Decode: Software Only13270140210280350SE +/- 0.03, N = 3SE +/- 0.04, N = 3SE +/- 0.05, N = 3319.43319.18319.12MIN: 307.73 / MAX: 324.37MIN: 307.73 / MAX: 324.36MIN: 315.83 / MAX: 324.361. mpv 0.32.0

Hierarchical INTegration

This test runs the U.S. Department of Energy's Ames Laboratory Hierarchical INTegration (HINT) benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgQUIPs, More Is BetterHierarchical INTegration 1.0Test: FLOAT31280M160M240M320M400MSE +/- 164211.85, N = 3SE +/- 80927.04, N = 3SE +/- 60537.24, N = 3380134502.20379856539.78379820315.571. (CC) gcc options: -O3 -march=native -lm

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.4Test: DNN - Deep Neural Network1239001800270036004500SE +/- 127.04, N = 12SE +/- 83.23, N = 15SE +/- 106.08, N = 154079428742871. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.26Backend: Eigen321160320480640800SE +/- 4.63, N = 3SE +/- 16.24, N = 9SE +/- 7.38, N = 77347126651. (CXX) g++ options: -flto -pthread