AMD EPYC Zen 1
AMD EPYC 7601 32-Core testing with a TYAN B8026T70AE24HR (V1.02.B10 BIOS) and llvmpipe on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2401081-NE-AMDEPYCZE16&grr.
CloverLeaf
Input: clover_bm16
Xmrig
Variant: GhostRider - Hash Count: 1M
Xcompact3d Incompact3d
Input: X3D-benchmarking input.i3d
Timed MrBayes Analysis
Primate Phylogeny Analysis
Blender
Blend File: Barbershop - Compute: CPU-Only
Timed Linux Kernel Compilation
Build: allmodconfig
easyWave
Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400
LAMMPS Molecular Dynamics Simulator
Model: 20k Atoms
Xmrig
Variant: KawPow - Hash Count: 1M
Xmrig
Variant: CryptoNight-Femto UPX2 - Hash Count: 1M
OpenRadioss
Model: Chrysler Neon 1M
Timed LLVM Compilation
Build System: Unix Makefiles
OpenFOAM
Input: drivaerFastback, Medium Mesh Size - Execution Time
OpenFOAM
Input: drivaerFastback, Medium Mesh Size - Mesh Time
Quicksilver
Input: CTS2
Timed LLVM Compilation
Build System: Ninja
FFmpeg
Encoder: libx265 - Scenario: Platform
FFmpeg
Encoder: libx265 - Scenario: Video On Demand
Timed Gem5 Compilation
Time To Compile
Timed Node.js Compilation
Time To Compile
miniBUDE
Implementation: OpenMP - Input Deck: BM2
miniBUDE
Implementation: OpenMP - Input Deck: BM2
OSPRay Studio
Camera: 3 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path Tracer - Acceleration: CPU
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 400
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 400
FFmpeg
Encoder: libx265 - Scenario: Upload
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 100
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 100
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 400
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 400
DuckDB
Benchmark: TPC-H Parquet
Quicksilver
Input: CORAL2 P2
ACES DGEMM
Sustained Floating-Point Rate
OSPRay Studio
Camera: 1 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path Tracer - Acceleration: CPU
DuckDB
Benchmark: IMDB
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 400
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 400
Blender
Blend File: Pabellon Barcelona - Compute: CPU-Only
Redis 7.0.12 + memtier_benchmark
Protocol: Redis - Clients: 100 - Set To Get Ratio: 1:5
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 100
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 100
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 400
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 400
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 100
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 800 - Client Number: 100
easyWave
Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200
Blender
Blend File: Classroom - Compute: CPU-Only
TensorFlow
Device: CPU - Batch Size: 16 - Model: ResNet-50
OSPRay Studio
Camera: 3 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path Tracer - Acceleration: CPU
VVenC
Video Input: Bosphorus 4K - Video Preset: Fast
OpenSSL
Algorithm: ChaCha20-Poly1305
OpenSSL
Algorithm: ChaCha20
OpenSSL
Algorithm: AES-256-GCM
OpenSSL
Algorithm: AES-128-GCM
OpenSSL
Algorithm: SHA512
OpenSSL
Algorithm: SHA256
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 400
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 400
OSPRay
Benchmark: particle_volume/scivis/real_time
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 100
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 500 - Client Number: 100
OSPRay Studio
Camera: 1 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path Tracer - Acceleration: CPU
OSPRay
Benchmark: particle_volume/pathtracer/real_time
Xmrig
Variant: Monero - Hash Count: 1M
Xmrig
Variant: CryptoNight-Heavy - Hash Count: 1M
GPAW
Input: Carbon Nanotube
rav1e
Speed: 1
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 400
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 400
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 100
Apache IoTDB
Device Count: 800 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 100
Apache Cassandra
Test: Writes
OSPRay
Benchmark: particle_volume/ao/real_time
FFmpeg
Encoder: libx265 - Scenario: Live
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 100
Apache IoTDB
Device Count: 500 - Batch Size Per Write: 100 - Sensor Count: 200 - Client Number: 100
CloverLeaf
Input: clover_bm64_short
Blender
Blend File: Fishy Cat - Compute: CPU-Only
Xmrig
Variant: Wownero - Hash Count: 1M
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
PyTorch
Device: CPU - Batch Size: 256 - Model: ResNet-50
QuantLib
Configuration: Multi-Threaded
GROMACS
Implementation: MPI CPU - Input: water_GMX50_bare
OSPRay Studio
Camera: 3 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path Tracer - Acceleration: CPU
VVenC
Video Input: Bosphorus 4K - Video Preset: Faster
OSPRay Studio
Camera: 1 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path Tracer - Acceleration: CPU
nginx
Connections: 1000
Apache HTTP Server
Concurrent Requests: 1000
nginx
Connections: 500
rav1e
Speed: 5
Quicksilver
Input: CORAL2 P1
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
rav1e
Speed: 10
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 4K
Chaos Group V-RAY
Mode: CPU
SPECFEM3D
Model: Layered Halfspace
SPECFEM3D
Model: Water-layered Halfspace
OSPRay
Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_time
Timed Linux Kernel Compilation
Build: defconfig
Blender
Blend File: BMW27 - Compute: CPU-Only
uvg266
Video Input: Bosphorus 4K - Video Preset: Medium
OpenVINO
Model: Face Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Face Detection FP16-INT8 - Device: CPU
rav1e
Speed: 6
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 4K
Redis 7.0.12 + memtier_benchmark
Protocol: Redis - Clients: 100 - Set To Get Ratio: 1:10
IndigoBench
Acceleration: CPU - Scene: Bedroom
Intel Open Image Denoise
Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only
IndigoBench
Acceleration: CPU - Scene: Supercar
OpenVINO
Model: Machine Translation EN To DE FP16 - Device: CPU
OpenVINO
Model: Machine Translation EN To DE FP16 - Device: CPU
OpenVINO
Model: Person Detection FP16 - Device: CPU
OpenVINO
Model: Person Detection FP16 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16-INT8 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16-INT8 - Device: CPU
OpenVINO
Model: Person Vehicle Bike Detection FP16 - Device: CPU
OpenVINO
Model: Person Vehicle Bike Detection FP16 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16-INT8 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16-INT8 - Device: CPU
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 4K
OpenVINO
Model: Vehicle Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Vehicle Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16-INT8 - Device: CPU
Speedb
Test: Update Random
OpenVINO
Model: Face Detection Retail FP16-INT8 - Device: CPU
OpenVINO
Model: Face Detection Retail FP16-INT8 - Device: CPU
Speedb
Test: Read Random Write Random
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU
RocksDB
Test: Update Random
Speedb
Test: Read While Writing
Speedb
Test: Random Read
RocksDB
Test: Read Random Write Random
RocksDB
Test: Read While Writing
OpenSSL
Algorithm: RSA4096
OpenSSL
Algorithm: RSA4096
RocksDB
Test: Random Read
OpenFOAM
Input: drivaerFastback, Small Mesh Size - Execution Time
OpenFOAM
Input: drivaerFastback, Small Mesh Size - Mesh Time
miniBUDE
Implementation: OpenMP - Input Deck: BM1
miniBUDE
Implementation: OpenMP - Input Deck: BM1
x265
Video Input: Bosphorus 4K
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
OSPRay
Benchmark: gravity_spheres_volume/dim_512/ao/real_time
7-Zip Compression
Test: Decompression Rating
7-Zip Compression
Test: Compression Rating
OSPRay
Benchmark: gravity_spheres_volume/dim_512/scivis/real_time
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
NAMD
ATPase Simulation - 327,506 Atoms
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-50
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Kripke
SPECFEM3D
Model: Homogeneous Halfspace
Embree
Binary: Pathtracer ISPC - Model: Crown
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Timed FFmpeg Compilation
Time To Compile
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Xcompact3d Incompact3d
Input: input.i3d 193 Cells Per Direction
Y-Cruncher
Pi Digits To Calculate: 1B
Embree
Binary: Pathtracer ISPC - Model: Asian Dragon
SPECFEM3D
Model: Tomographic Model
SPECFEM3D
Model: Mount St. Helens
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 4K
uvg266
Video Input: Bosphorus 4K - Video Preset: Very Fast
uvg266
Video Input: Bosphorus 4K - Video Preset: Super Fast
uvg266
Video Input: Bosphorus 4K - Video Preset: Ultra Fast
Y-Cruncher
Pi Digits To Calculate: 500M
CPU Power Consumption Monitor
Phoronix Test Suite System Monitoring
Meta Performance Per Watts
Performance Per Watts
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: GhostRider - Hash Count: 1M
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: KawPow - Hash Count: 1M
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: CryptoNight-Heavy - Hash Count: 1M
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: CryptoNight-Femto UPX2 - Hash Count: 1M
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: Wownero - Hash Count: 1M
Xmrig
CPU Power Consumption Monitor
Xmrig
Variant: Monero - Hash Count: 1M
PyTorch
CPU Power Consumption Monitor
PyTorch
Device: CPU - Batch Size: 256 - Model: ResNet-50
PyTorch
CPU Power Consumption Monitor
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-50
TensorFlow
CPU Power Consumption Monitor
TensorFlow
Device: CPU - Batch Size: 16 - Model: ResNet-50
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
Neural Magic DeepSparse
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
OpenVINO
CPU Power Consumption Monitor
VVenC
CPU Power Consumption Monitor
VVenC
Video Input: Bosphorus 4K - Video Preset: Faster
VVenC
CPU Power Consumption Monitor
VVenC
Video Input: Bosphorus 4K - Video Preset: Fast
uvg266
CPU Power Consumption Monitor
uvg266
Video Input: Bosphorus 4K - Video Preset: Ultra Fast
uvg266
CPU Power Consumption Monitor
uvg266
Video Input: Bosphorus 4K - Video Preset: Super Fast
uvg266
CPU Power Consumption Monitor
uvg266
Video Input: Bosphorus 4K - Video Preset: Very Fast
uvg266
CPU Power Consumption Monitor
uvg266
Video Input: Bosphorus 4K - Video Preset: Medium
x265
CPU Power Consumption Monitor
x265
Video Input: Bosphorus 4K
rav1e
CPU Power Consumption Monitor
rav1e
Speed: 1
rav1e
CPU Power Consumption Monitor
rav1e
Speed: 5
rav1e
CPU Power Consumption Monitor
rav1e
Speed: 6
rav1e
CPU Power Consumption Monitor
rav1e
Speed: 10
SVT-AV1
CPU Power Consumption Monitor
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 4K
SVT-AV1
CPU Power Consumption Monitor
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 4K
SVT-AV1
CPU Power Consumption Monitor
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 4K
SVT-AV1
CPU Power Consumption Monitor
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 4K
FFmpeg
CPU Power Consumption Monitor
FFmpeg
Encoder: libx265 - Scenario: Video On Demand
FFmpeg
CPU Power Consumption Monitor
FFmpeg
Encoder: libx265 - Scenario: Platform
FFmpeg
CPU Power Consumption Monitor
FFmpeg
Encoder: libx265 - Scenario: Upload
FFmpeg
CPU Power Consumption Monitor
FFmpeg
Encoder: libx265 - Scenario: Live
IndigoBench
CPU Power Consumption Monitor
IndigoBench
Acceleration: CPU - Scene: Bedroom
IndigoBench
CPU Power Consumption Monitor
IndigoBench
Acceleration: CPU - Scene: Supercar
Chaos Group V-RAY
CPU Power Consumption Monitor
Chaos Group V-RAY
Mode: CPU
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: particle_volume/pathtracer/real_time
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: particle_volume/scivis/real_time
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: particle_volume/ao/real_time
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_time
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: gravity_spheres_volume/dim_512/scivis/real_time
OSPRay
CPU Power Consumption Monitor
OSPRay
Benchmark: gravity_spheres_volume/dim_512/ao/real_time
OSPRay Studio
CPU Power Consumption Monitor
OSPRay Studio
CPU Power Consumption Monitor
OSPRay Studio
CPU Power Consumption Monitor
OSPRay Studio
CPU Power Consumption Monitor