GPAW

GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE).

To run this test with the Phoronix Test Suite, the basic command is: phoronix-test-suite benchmark gpaw.

Project Site

wiki.fysik.dtu.dk

Source Repository

gitlab.com

Test Created

19 September 2020

Last Updated

18 June 2023

Test Maintainer

Michael Larabel 

Test Type

System

Average Install Time

1 Minute, 25 Seconds

Average Run Time

24 Minutes, 37 Seconds

Test Dependencies

OpenMPI + FFTW + CMake + C/C++ Compiler Toolchain + Python Numpy + Python + Python Scipy + BLAS (Basic Linear Algebra Sub-Routine)

Accolades

30k+ Downloads

Supported Platforms


Public Result Uploads *Reported Installs **Reported Test Completions **Test Profile Page Views ***OpenBenchmarking.orgEventsGPAW Popularity Statisticspts/gpaw2020.092020.112021.012021.032021.052021.072021.092021.112022.012022.032022.052022.072022.092022.112023.012023.032023.052023.072023.092023.112024.012024.032024.052024.072024.092024.112025.0114002800420056007000
* Uploading of benchmark result data to OpenBenchmarking.org is always optional (opt-in) via the Phoronix Test Suite for users wishing to share their results publicly.
** Data based on those opting to upload their test results to OpenBenchmarking.org and users enabling the opt-in anonymous statistics reporting while running benchmarks from an Internet-connected platform.
*** Test profile page view reporting began March 2021.
Data updated weekly as of 24 January 2025.

Revision History

pts/gpaw-1.2.0   [View Source]   Sun, 18 Jun 2023 09:51:08 GMT
Update against latest GPAW upstream.

pts/gpaw-1.1.0   [View Source]   Tue, 18 Jan 2022 18:04:24 GMT
Update against GPAW 22.1 upstream.

pts/gpaw-1.0.0   [View Source]   Sat, 19 Sep 2020 09:25:55 GMT
Initial commit of GPAW>

Suites Using This Test

HPC - High Performance Computing

Scientific Computing

MPI Benchmarks

Quantum Mechanics


Performance Metrics

Analyze Test Configuration:

GPAW 23.6

Input: Carbon Nanotube

OpenBenchmarking.org metrics for this test profile configuration based on 624 public results since 18 June 2023 with the latest data as of 20 January 2025.

Below is an overview of the generalized performance for components where there is sufficient statistically significant data based upon user-uploaded results. It is important to keep in mind particularly in the Linux/open-source space there can be vastly different OS configurations, with this overview intended to offer just general guidance as to the performance expectations.

Component
Percentile Rank
# Compatible Public Results
Seconds (Average)
Mid-Tier
75th
> 38
71st
16
41 +/- 1
Median
50th
81
48th
15
89 +/- 3
35th
4
143 +/- 1
28th
8
178 +/- 18
Low-Tier
25th
> 189
20th
4
209 +/- 6
15th
5
249 +/- 34
14th
4
265 +/- 18
3rd
5
524 +/- 21
2nd
4
557 +/- 2
Detailed Performance Overview
OpenBenchmarking.orgDistribution Of Public Results - Input: Carbon Nanotube624 Results Range From 19 To 7285 Seconds191653114576037498951041118713331479162517711917206322092355250126472793293930853231337735233669381539614107425343994545469148374983512952755421556757135859600561516297644365896735688170277173731990180270360450

Based on OpenBenchmarking.org data, the selected test / test configuration (GPAW 23.6 - Input: Carbon Nanotube) has an average run-time of 8 minutes. By default this test profile is set to run at least 3 times but may increase if the standard deviation exceeds pre-defined defaults or other calculations deem additional runs necessary for greater statistical accuracy of the result.

OpenBenchmarking.orgMinutesTime Required To Complete BenchmarkInput: Carbon NanotubeRun-Time918273645Min: 1 / Avg: 7.4 / Max: 46

Based on public OpenBenchmarking.org results, the selected test / test configuration has an average standard deviation of 0.3%.

OpenBenchmarking.orgPercent, Fewer Is BetterAverage Deviation Between RunsInput: Carbon NanotubeDeviation246810Min: 0 / Avg: 0.28 / Max: 3

Does It Scale Well With Increasing Cores?

Yes, based on the automated analysis of the collected public benchmark data, this test / test settings does generally scale well with increasing CPU core counts. Data based on publicly available results for this test / test settings, separated by vendor, result divided by the reference CPU clock speed, grouped by matching physical CPU core count, and normalized against the smallest core count tested from each vendor for each CPU having a sufficient number of test samples and statistically significant data.

AMDIntelOpenBenchmarking.orgRelative Core Scaling To BaseGPAW CPU Core ScalingInput: Carbon Nanotube681214162432649612819248121620

Notable Instruction Set Usage

Notable instruction set extensions supported by this test, based on an automatic analysis by the Phoronix Test Suite / OpenBenchmarking.org analytics engine.

Instruction Set
Support
Instructions Detected
SSE2 (SSE2)
Used by default on supported hardware.
 
MOVDQA MOVDQU PUNPCKLQDQ PADDQ CVTSS2SD UCOMISD CVTSD2SS MOVD CVTSI2SD ADDSD MULSD XORPD COMISD DIVSD SUBSD CVTTSD2SI MOVAPD SHUFPD ANDPD UNPCKLPD MULPD UNPCKHPD SUBPD ADDPD PUNPCKHQDQ PSUBQ PSHUFD PSRLDQ ORPD SQRTSD ANDNPD CMPNLESD MINSD MAXSD MOVMSKPD MOVUPD CMPLTSD DIVPD
Last automated analysis: 24 June 2023

This test profile binary relies on the shared libraries libm.so.6, libexpat.so.1, libz.so.1, libc.so.6.

Tested CPU Architectures

This benchmark has been successfully tested on the below mentioned architectures. The CPU architectures listed is where successful OpenBenchmarking.org result uploads occurred, namely for helping to determine if a given test is compatible with various alternative CPU architectures.

CPU Architecture
Kernel Identifier
Verified On
Intel / AMD x86 64-bit
x86_64
(Many Processors)
ARMv8 64-bit
aarch64
ARMv8 Neoverse-N1, ARMv8 Neoverse-N1 128-Core, ARMv8 Neoverse-V1, ARMv8 Neoverse-V2, ARMv8 Neoverse-V2 72-Core, AmpereOne 128-Core, AmpereOne 160-Core, AmpereOne 192-Core, AmpereOne 32-Core, AmpereOne 64-Core, AmpereOne 72-Core, AmpereOne 96-Core

Recent Test Results

OpenBenchmarking.org Results Compare

1 System - 53 Benchmark Results

Intel Xeon D-2796TE - Kontron COMh-sdID E2 v1.0.0 - Intel Ice Lake IEH

Debian 12 - 6.1.0-27-amd64 - X Server

3 Systems - 126 Benchmark Results

AmpereOne - Supermicro ARS-211M-NR R13SPD v1.02 - Ampere Computing LLC Device e208

Ubuntu 24.04 - 6.8.0-39-generic-64k - GCC 13.2.0

33 Systems - 367 Benchmark Results

4 Systems - 856 Benchmark Results

1 System - 461 Benchmark Results

AMD Ryzen 7 5800X 8-Core - GIGABYTE MC12-LE0-00 v01000100 - AMD Starship

Ubuntu 24.04 - 6.11.0-061100-generic - GNOME Shell 46.0

10 Systems - 145 Benchmark Results

2 x Intel Xeon 6980P - Intel AvenueCity v0.01 - Intel Ice Lake IEH

Ubuntu 24.04 - 6.10.0-phx - GCC 13.2.0

1 System - 336 Benchmark Results

AmpereOne - Supermicro ARS-211M-NR R13SPD v1.02 - Ampere Computing LLC Device e208

Ubuntu 24.04 - 6.8.0-39-generic-64k - GCC 13.2.0

5 Systems - 531 Benchmark Results

AMD EPYC 7702 64-Core - Supermicro Super Server H12SSL-NT v1.02 - AMD Starship

Debian 12 - 6.8.8-2-pve - NVIDIA

2 Systems - 413 Benchmark Results

Intel Core i7-1185G7 - Dell XPS 13 9310 0DXP1F - Intel Tiger Lake-LP

Ubuntu 24.04 - 6.10.0-061000rc4daily20240621-generic - GNOME Shell 46.0

1 System - 1002 Benchmark Results

1 System - 999 Benchmark Results

1 System - 57 Benchmark Results

AMD Ryzen 9 7950X3D 16-Core - ASUS TUF GAMING X670E-PLUS WIFI - AMD Device 14d8

Ubuntu 22.04 - 6.5.0-44-generic - GNOME Shell 42.9

Find More Test Results