wxl2pay-h510-ml

Intel Core i3-10105 testing with a ASRock H510M-HDV/M.2 SE (P1.60 BIOS) and Intel UHD 630 CML GT2 3GB on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2310096-HERT-H510I3158
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
Intel UHD 630 CML GT2
October 04 2023
  3 Days, 3 Hours, 31 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


wxl2pay-h510-mlOpenBenchmarking.orgPhoronix Test SuiteIntel Core i3-10105 @ 4.40GHz (4 Cores / 8 Threads)ASRock H510M-HDV/M.2 SE (P1.60 BIOS)Intel Comet Lake PCH3584MB1000GB Western Digital WDS100T2B0AIntel UHD 630 CML GT2 3GB (1100MHz)Realtek ALC897G185BGEL01Realtek RTL8111/8168/8411Ubuntu 20.045.15.0-83-generic (x86_64)GNOME Shell 3.36.9X Server 1.20.134.6 Mesa 21.2.61.2.182GCC 9.4.0ext41368x768ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionWxl2pay-h510-ml BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-9-9QDOt0/gcc-9-9.4.0/debian/tmp-nvptx/usr,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xf8 - Thermald 1.9.1 - Python 3.8.10- gather_data_sampling: Mitigation of Microcode + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

wxl2pay-h510-mlopencv: DNN - Deep Neural Networkwhisper-cpp: ggml-medium.en - 2016 State of the Unionwhisper-cpp: ggml-small.en - 2016 State of the Unionwhisper-cpp: ggml-base.en - 2016 State of the Unionscikit-learn: Sparse Rand Projections / 100 Iterationsscikit-learn: Kernel PCA Solvers / Time vs. N Componentsscikit-learn: Kernel PCA Solvers / Time vs. N Samplesscikit-learn: Hist Gradient Boosting Categorical Onlyscikit-learn: Plot Polynomial Kernel Approximationscikit-learn: 20 Newsgroups / Logistic Regressionscikit-learn: Hist Gradient Boosting Higgs Bosonscikit-learn: Plot Singular Value Decompositionscikit-learn: Hist Gradient Boosting Threadingscikit-learn: Hist Gradient Boosting Adultscikit-learn: Covertype Dataset Benchmarkscikit-learn: Sample Without Replacementscikit-learn: Hist Gradient Boostingscikit-learn: Plot Incremental PCAscikit-learn: TSNE MNIST Datasetscikit-learn: LocalOutlierFactorscikit-learn: Feature Expansionsscikit-learn: Plot OMP vs. LARSscikit-learn: Plot Hierarchicalscikit-learn: Text Vectorizersscikit-learn: Plot Lasso Pathscikit-learn: SGD Regressionscikit-learn: Plot Neighborsscikit-learn: MNIST Datasetscikit-learn: Plot Wardscikit-learn: Sparsifyscikit-learn: Lassoscikit-learn: Treescikit-learn: SAGAscikit-learn: GLMmlpack: scikit_svmmlpack: scikit_icanumenta-nab: Contextual Anomaly Detector OSEnumenta-nab: Bayesian Changepointnumenta-nab: Earthgecko Skylinenumenta-nab: Windowed Gaussiannumenta-nab: Relative Entropynumenta-nab: KNN CADopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUplaidml: No - Inference - ResNet 50 - CPUplaidml: No - Inference - VGG16 - CPUtnn: CPU - SqueezeNet v1.1tnn: CPU - SqueezeNet v2tnn: CPU - MobileNet v2tnn: CPU - DenseNetncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetmnn: inception-v3mnn: mobilenet-v1-1.0mnn: MobileNetV2_224mnn: SqueezeNetV1.0mnn: resnet-v2-50mnn: squeezenetv1.1mnn: mobilenetV3mnn: nasnetcaffe: GoogleNet - CPU - 1000caffe: GoogleNet - CPU - 200caffe: GoogleNet - CPU - 100caffe: AlexNet - CPU - 1000caffe: AlexNet - CPU - 200caffe: AlexNet - CPU - 100deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamtensorflow: CPU - 256 - GoogLeNettensorflow: CPU - 64 - ResNet-50tensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 512 - AlexNettensorflow: CPU - 256 - AlexNettensorflow: CPU - 64 - AlexNettensorflow: CPU - 32 - AlexNettensorflow: CPU - 16 - AlexNettensorflow: CPU - 64 - VGG-16tensorflow: CPU - 32 - VGG-16tensorflow: CPU - 16 - VGG-16tensorflow-lite: Mobilenet Quanttensorflow-lite: Mobilenet Floattensorflow-lite: NASNet Mobiletensorflow-lite: Inception V4tensorflow-lite: SqueezeNetrnnoise: rbenchmark: deepspeech: CPUnumpy: onednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 1D - f32 - CPUlczero: BLAStensorflow: CPU - 32 - ResNet-50tensorflow-lite: Inception ResNet V2onednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUIntel UHD 630 CML GT2431134440.68581317.33671416.374261685.834337.108431.64744.040270.16260.509150.758330.740372.859163.805551.060135.983196.38553.964477.715132.593198.209191.590261.03372.484355.540151.871332.55997.59581.29398.937547.015100.991995.6981053.25424.8982.0697.572125.561389.30017.91938.969383.7110.814859.5782.3748.582.011970.08100.6039.7545.2388.3717.31230.89378.2610.57101.6439.349.62415.0237.04107.9236.09110.72386.6110.3428.47140.311706.582.3491.5043.69499.328.01497.318.043524.391.123.426.36305.52368.012337.2943918.6255.94166.3210.1225.9759.5251.5718.1122.02148.5326.050.9813.686.753.136.5010.8240.435.97165.4910.1425.8759.5951.4418.0122.06148.7226.170.9613.666.713.136.5110.8440.3456.8915.6905.5879.14548.9114.0822.11314.229150034029954415006965316712988864887342.90062.9162672.92472.972080.311612.4502139.371414.347630.887332.365461.145432.6880267.10113.7437499.27354.005640.966224.405773.341927.255051.603019.3749101.611319.676724.741040.404144.885844.5376237.58254.2085465.66694.292152.464319.0561103.730619.27604.4246225.53638.0184248.743624.840640.242046.481143.0198131.23797.6194284.16357.035744.303422.567668.225229.304215.091766.224129.383267.9977339.47752.9456673.64782.96794.861.6711.5811.493.8511.1737.3537.1132.9628.2021.641.011.571.856530.935296.0216980.694854.77954.0024.6190.2640110.85912335.666433.019956.016376.189995.816419.169905.237.617684.2784051.151814.718159.20255.211093.0698628.143112.57891502.76179365.311.9690OpenBenchmarking.org

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural NetworkIntel UHD 630 CML GT29K18K27K36K45KSE +/- 544.05, N = 3431131. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

Whisper.cpp

Whisper.cpp is a port of OpenAI's Whisper model in C/C++. Whisper.cpp is developed by Georgi Gerganov for transcribing WAV audio files to text / speech recognition. Whisper.cpp supports ARM NEON, x86 AVX, and other advanced CPU features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-medium.en - Input: 2016 State of the UnionIntel UHD 630 CML GT210002000300040005000SE +/- 14.55, N = 34440.691. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-small.en - Input: 2016 State of the UnionIntel UHD 630 CML GT230060090012001500SE +/- 0.25, N = 31317.341. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-base.en - Input: 2016 State of the UnionIntel UHD 630 CML GT290180270360450SE +/- 0.03, N = 3416.371. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 IterationsIntel UHD 630 CML GT2400800120016002000SE +/- 5.06, N = 31685.831. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N ComponentsIntel UHD 630 CML GT270140210280350SE +/- 6.65, N = 9337.111. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N SamplesIntel UHD 630 CML GT290180270360450SE +/- 0.27, N = 3431.651. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical OnlyIntel UHD 630 CML GT21020304050SE +/- 0.15, N = 344.041. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel ApproximationIntel UHD 630 CML GT260120180240300SE +/- 0.40, N = 3270.161. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic RegressionIntel UHD 630 CML GT21428425670SE +/- 0.03, N = 360.511. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs BosonIntel UHD 630 CML GT2306090120150SE +/- 0.74, N = 3150.761. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value DecompositionIntel UHD 630 CML GT270140210280350SE +/- 1.66, N = 3330.741. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting ThreadingIntel UHD 630 CML GT280160240320400SE +/- 0.71, N = 3372.861. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting AdultIntel UHD 630 CML GT24080120160200SE +/- 0.20, N = 3163.811. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset BenchmarkIntel UHD 630 CML GT2120240360480600SE +/- 0.69, N = 3551.061. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without ReplacementIntel UHD 630 CML GT2306090120150SE +/- 1.21, N = 7135.981. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient BoostingIntel UHD 630 CML GT24080120160200SE +/- 0.12, N = 3196.391. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAIntel UHD 630 CML GT21224364860SE +/- 0.47, N = 353.961. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST DatasetIntel UHD 630 CML GT2100200300400500SE +/- 1.20, N = 3477.721. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorIntel UHD 630 CML GT2306090120150SE +/- 0.64, N = 3132.591. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature ExpansionsIntel UHD 630 CML GT24080120160200SE +/- 0.40, N = 3198.211. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSIntel UHD 630 CML GT24080120160200SE +/- 0.08, N = 3191.591. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot HierarchicalIntel UHD 630 CML GT260120180240300SE +/- 0.68, N = 3261.031. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text VectorizersIntel UHD 630 CML GT21632486480SE +/- 0.18, N = 372.481. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso PathIntel UHD 630 CML GT280160240320400SE +/- 1.61, N = 3355.541. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD RegressionIntel UHD 630 CML GT2306090120150SE +/- 0.25, N = 3151.871. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot NeighborsIntel UHD 630 CML GT270140210280350SE +/- 2.68, N = 3332.561. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST DatasetIntel UHD 630 CML GT220406080100SE +/- 0.18, N = 397.601. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot WardIntel UHD 630 CML GT220406080100SE +/- 0.21, N = 381.291. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SparsifyIntel UHD 630 CML GT220406080100SE +/- 0.12, N = 398.941. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LassoIntel UHD 630 CML GT2120240360480600SE +/- 0.59, N = 3547.021. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TreeIntel UHD 630 CML GT220406080100SE +/- 1.39, N = 3100.991. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAIntel UHD 630 CML GT22004006008001000SE +/- 1.39, N = 3995.701. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMIntel UHD 630 CML GT22004006008001000SE +/- 2.57, N = 31053.251. (F9X) gfortran options: -O0

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmIntel UHD 630 CML GT2612182430SE +/- 0.01, N = 324.89

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaIntel UHD 630 CML GT220406080100SE +/- 0.09, N = 382.06

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEIntel UHD 630 CML GT220406080100SE +/- 0.30, N = 397.57

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointIntel UHD 630 CML GT2306090120150SE +/- 0.29, N = 3125.56

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineIntel UHD 630 CML GT280160240320400SE +/- 1.64, N = 3389.30

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianIntel UHD 630 CML GT248121620SE +/- 0.03, N = 317.92

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyIntel UHD 630 CML GT2918273645SE +/- 0.14, N = 338.97

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADIntel UHD 630 CML GT280160240320400SE +/- 2.80, N = 3383.71

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 630 CML GT20.18230.36460.54690.72920.9115SE +/- 0.01, N = 30.81MIN: 0.52 / MAX: 19.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 630 CML GT210002000300040005000SE +/- 37.23, N = 34859.571. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.65, N = 1582.37MIN: 50.58 / MAX: 129.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 630 CML GT21122334455SE +/- 0.36, N = 1548.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 630 CML GT20.45230.90461.35691.80922.2615SE +/- 0.01, N = 32.01MIN: 1.22 / MAX: 27.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 630 CML GT2400800120016002000SE +/- 3.99, N = 31970.081. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.99, N = 3100.60MIN: 73.88 / MAX: 152.51. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.39, N = 339.751. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Vehicle Bike Detection FP16 - Device: CPUIntel UHD 630 CML GT21020304050SE +/- 0.15, N = 345.23MIN: 13.81 / MAX: 82.941. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Vehicle Bike Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.29, N = 388.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT248121620SE +/- 0.01, N = 317.31MIN: 9.31 / MAX: 34.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT250100150200250SE +/- 0.12, N = 3230.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 630 CML GT280160240320400SE +/- 2.60, N = 3378.26MIN: 227.5 / MAX: 4681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.07, N = 310.571. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.70, N = 3101.64MIN: 49 / MAX: 124.11. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.27, N = 339.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.02, N = 39.62MIN: 5.27 / MAX: 25.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 630 CML GT290180270360450SE +/- 0.96, N = 3415.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.20, N = 337.04MIN: 27.28 / MAX: 78.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.59, N = 3107.921. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT2816243240SE +/- 0.16, N = 336.09MIN: 17.19 / MAX: 63.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.48, N = 3110.721. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 630 CML GT280160240320400SE +/- 0.79, N = 3386.61MIN: 188.36 / MAX: 436.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.02, N = 310.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 630 CML GT2714212835SE +/- 0.14, N = 328.47MIN: 5.99 / MAX: 77.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUIntel UHD 630 CML GT2306090120150SE +/- 0.69, N = 3140.311. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT2400800120016002000SE +/- 3.65, N = 31706.58MIN: 1421.65 / MAX: 1935.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT20.52651.0531.57952.1062.6325SE +/- 0.01, N = 32.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.13, N = 391.50MIN: 54.89 / MAX: 133.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUIntel UHD 630 CML GT21020304050SE +/- 0.06, N = 343.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 630 CML GT2110220330440550SE +/- 1.21, N = 3499.32MIN: 458.65 / MAX: 579.111. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.02, N = 38.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 630 CML GT2110220330440550SE +/- 0.83, N = 3497.31MIN: 451.13 / MAX: 552.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.01, N = 38.041. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 630 CML GT28001600240032004000SE +/- 24.75, N = 33524.39MIN: 3210.01 / MAX: 3763.511. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUIntel UHD 630 CML GT20.2520.5040.7561.0081.26SE +/- 0.00, N = 31.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -pthread

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUIntel UHD 630 CML GT20.76951.5392.30853.0783.8475SE +/- 0.00, N = 33.42

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.01, N = 36.36

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v1.1Intel UHD 630 CML GT270140210280350SE +/- 0.06, N = 3305.52MIN: 304.76 / MAX: 308.961. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v2Intel UHD 630 CML GT21530456075SE +/- 0.32, N = 368.01MIN: 67.4 / MAX: 72.61. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: MobileNet v2Intel UHD 630 CML GT270140210280350SE +/- 1.25, N = 3337.29MIN: 334.64 / MAX: 347.111. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: DenseNetIntel UHD 630 CML GT28001600240032004000SE +/- 14.34, N = 33918.63MIN: 3880.62 / MAX: 3971.411. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetIntel UHD 630 CML GT21.33652.6734.00955.3466.6825SE +/- 0.01, N = 35.94MIN: 5.82 / MAX: 12.241. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerIntel UHD 630 CML GT24080120160200SE +/- 0.77, N = 3166.32MIN: 164.12 / MAX: 178.391. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mIntel UHD 630 CML GT23691215SE +/- 0.02, N = 310.12MIN: 9.98 / MAX: 16.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdIntel UHD 630 CML GT2612182430SE +/- 0.07, N = 325.97MIN: 25.34 / MAX: 36.31. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyIntel UHD 630 CML GT21326395265SE +/- 0.07, N = 359.52MIN: 58.82 / MAX: 70.121. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50Intel UHD 630 CML GT21224364860SE +/- 0.12, N = 351.57MIN: 50.67 / MAX: 61.681. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetIntel UHD 630 CML GT248121620SE +/- 0.04, N = 318.11MIN: 17.79 / MAX: 28.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18Intel UHD 630 CML GT2510152025SE +/- 0.02, N = 322.02MIN: 21.61 / MAX: 28.491. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16Intel UHD 630 CML GT2306090120150SE +/- 0.09, N = 3148.53MIN: 146.88 / MAX: 159.071. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetIntel UHD 630 CML GT2612182430SE +/- 0.03, N = 326.05MIN: 25.71 / MAX: 32.491. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefaceIntel UHD 630 CML GT20.22050.4410.66150.8821.1025SE +/- 0.01, N = 30.98MIN: 0.93 / MAX: 7.081. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0Intel UHD 630 CML GT248121620SE +/- 0.05, N = 313.68MIN: 13.34 / MAX: 24.591. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetIntel UHD 630 CML GT2246810SE +/- 0.01, N = 36.75MIN: 6.54 / MAX: 13.11. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2Intel UHD 630 CML GT20.70431.40862.11292.81723.5215SE +/- 0.01, N = 33.13MIN: 3.06 / MAX: 9.461. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3Intel UHD 630 CML GT2246810SE +/- 0.03, N = 36.50MIN: 6.27 / MAX: 12.651. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2Intel UHD 630 CML GT23691215SE +/- 0.01, N = 310.82MIN: 10.6 / MAX: 17.111. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetIntel UHD 630 CML GT2918273645SE +/- 0.33, N = 340.43MIN: 39.6 / MAX: 86.31. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetIntel UHD 630 CML GT21.34332.68664.02995.37326.7165SE +/- 0.05, N = 35.97MIN: 5.81 / MAX: 12.211. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerIntel UHD 630 CML GT24080120160200SE +/- 0.29, N = 3165.49MIN: 163.77 / MAX: 184.451. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mIntel UHD 630 CML GT23691215SE +/- 0.01, N = 310.14MIN: 10.01 / MAX: 16.311. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdIntel UHD 630 CML GT2612182430SE +/- 0.04, N = 325.87MIN: 25.33 / MAX: 32.41. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyIntel UHD 630 CML GT21326395265SE +/- 0.02, N = 359.59MIN: 59 / MAX: 71.961. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50Intel UHD 630 CML GT21224364860SE +/- 0.03, N = 351.44MIN: 50.67 / MAX: 62.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetIntel UHD 630 CML GT248121620SE +/- 0.03, N = 318.01MIN: 17.75 / MAX: 24.341. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18Intel UHD 630 CML GT2510152025SE +/- 0.03, N = 322.06MIN: 21.75 / MAX: 28.731. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16Intel UHD 630 CML GT2306090120150SE +/- 0.14, N = 3148.72MIN: 147.05 / MAX: 162.091. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetIntel UHD 630 CML GT2612182430SE +/- 0.08, N = 326.17MIN: 25.74 / MAX: 36.931. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefaceIntel UHD 630 CML GT20.2160.4320.6480.8641.08SE +/- 0.02, N = 30.96MIN: 0.91 / MAX: 7.211. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0Intel UHD 630 CML GT248121620SE +/- 0.04, N = 313.66MIN: 13.32 / MAX: 19.851. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetIntel UHD 630 CML GT2246810SE +/- 0.02, N = 36.71MIN: 6.49 / MAX: 12.991. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2Intel UHD 630 CML GT20.70431.40862.11292.81723.5215SE +/- 0.02, N = 33.13MIN: 3.06 / MAX: 9.281. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3Intel UHD 630 CML GT2246810SE +/- 0.01, N = 36.51MIN: 6.31 / MAX: 12.991. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2Intel UHD 630 CML GT23691215SE +/- 0.03, N = 310.84MIN: 10.58 / MAX: 17.321. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetIntel UHD 630 CML GT2918273645SE +/- 0.13, N = 340.34MIN: 39.68 / MAX: 95.591. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. This MNN test profile is building the OpenMP / CPU threaded version for processor benchmarking and not any GPU-accelerated test. MNN does allow making use of AVX-512 extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: inception-v3Intel UHD 630 CML GT21326395265SE +/- 0.24, N = 356.89MIN: 55.22 / MAX: 70.51. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenet-v1-1.0Intel UHD 630 CML GT21.28032.56063.84095.12126.4015SE +/- 0.013, N = 35.690MIN: 5.57 / MAX: 13.511. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: MobileNetV2_224Intel UHD 630 CML GT21.25712.51423.77135.02846.2855SE +/- 0.027, N = 35.587MIN: 5.43 / MAX: 13.51. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Intel UHD 630 CML GT23691215SE +/- 0.025, N = 39.145MIN: 8.94 / MAX: 22.211. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: resnet-v2-50Intel UHD 630 CML GT21122334455SE +/- 0.09, N = 348.91MIN: 48.17 / MAX: 92.971. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: squeezenetv1.1Intel UHD 630 CML GT20.91851.8372.75553.6744.5925SE +/- 0.024, N = 34.082MIN: 3.9 / MAX: 12.661. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenetV3Intel UHD 630 CML GT20.47540.95081.42621.90162.377SE +/- 0.028, N = 32.113MIN: 2.02 / MAX: 10.391. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: nasnetIntel UHD 630 CML GT248121620SE +/- 0.04, N = 314.23MIN: 13.42 / MAX: 27.91. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 1000Intel UHD 630 CML GT2300K600K900K1200K1500KSE +/- 1041.84, N = 315003401. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 200Intel UHD 630 CML GT260K120K180K240K300KSE +/- 425.35, N = 32995441. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 100Intel UHD 630 CML GT230K60K90K120K150KSE +/- 273.80, N = 31500691. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1000Intel UHD 630 CML GT2140K280K420K560K700KSE +/- 1226.09, N = 36531671. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 200Intel UHD 630 CML GT230K60K90K120K150KSE +/- 279.21, N = 31298881. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 100Intel UHD 630 CML GT214K28K42K56K70KSE +/- 90.04, N = 3648871. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Neural Magic DeepSparse

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT270140210280350SE +/- 0.16, N = 3342.90

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.65611.31221.96832.62443.2805SE +/- 0.0014, N = 32.9162

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2150300450600750SE +/- 1.86, N = 3672.92

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.66871.33742.00612.67483.3435SE +/- 0.0082, N = 32.9720

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT220406080100SE +/- 0.07, N = 380.31

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT23691215SE +/- 0.01, N = 312.45

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2306090120150SE +/- 1.42, N = 4139.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT248121620SE +/- 0.15, N = 414.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2714212835SE +/- 0.07, N = 330.89

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2816243240SE +/- 0.07, N = 332.37

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21428425670SE +/- 0.19, N = 361.15

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2816243240SE +/- 0.10, N = 332.69

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT260120180240300SE +/- 0.26, N = 3267.10

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.84231.68462.52693.36924.2115SE +/- 0.0036, N = 33.7437

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2110220330440550SE +/- 0.78, N = 3499.27

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.90131.80262.70393.60524.5065SE +/- 0.0062, N = 34.0056

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.02, N = 340.97

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.01, N = 324.41

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21632486480SE +/- 0.09, N = 373.34

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2612182430SE +/- 0.03, N = 327.26

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21224364860SE +/- 0.03, N = 351.60

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2510152025SE +/- 0.01, N = 319.37

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT220406080100SE +/- 0.17, N = 3101.61

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2510152025SE +/- 0.03, N = 319.68

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.06, N = 324.74

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.10, N = 340.40

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.02, N = 344.89

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.02, N = 344.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.40, N = 3237.58

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.94691.89382.84073.78764.7345SE +/- 0.0069, N = 34.2085

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2100200300400500SE +/- 1.32, N = 3465.67

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.96571.93142.89713.86284.8285SE +/- 0.0126, N = 34.2921

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21224364860SE +/- 0.14, N = 352.46

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2510152025SE +/- 0.05, N = 319.06

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT220406080100SE +/- 0.24, N = 3103.73

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2510152025SE +/- 0.05, N = 319.28

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.99551.9912.98653.9824.9775SE +/- 0.0046, N = 34.4246

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.24, N = 3225.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2246810SE +/- 0.0089, N = 38.0184

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.28, N = 3248.74

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.02, N = 324.84

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.03, N = 340.24

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21122334455SE +/- 0.45, N = 646.48

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.42, N = 643.02

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2306090120150SE +/- 0.54, N = 3131.24

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2246810SE +/- 0.0312, N = 37.6194

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT260120180240300SE +/- 1.49, N = 3284.16

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2246810SE +/- 0.0378, N = 37.0357

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21020304050SE +/- 0.20, N = 344.30

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2510152025SE +/- 0.10, N = 322.57

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21530456075SE +/- 0.21, N = 368.23

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2714212835SE +/- 0.09, N = 329.30

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT248121620SE +/- 0.04, N = 315.09

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21530456075SE +/- 0.16, N = 366.22

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2714212835SE +/- 0.15, N = 329.38

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21530456075SE +/- 0.35, N = 368.00

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT270140210280350SE +/- 0.36, N = 3339.48

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.66281.32561.98842.65123.314SE +/- 0.0031, N = 32.9456

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2150300450600750SE +/- 1.26, N = 3673.65

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.66781.33562.00342.67123.339SE +/- 0.0060, N = 32.9679

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: GoogLeNetIntel UHD 630 CML GT21.09352.1873.28054.3745.4675SE +/- 0.08, N = 34.86

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: ResNet-50Intel UHD 630 CML GT20.37580.75161.12741.50321.879SE +/- 0.03, N = 31.67

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.01, N = 311.58

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.01, N = 311.49

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50Intel UHD 630 CML GT20.86631.73262.59893.46524.3315SE +/- 0.01, N = 33.85

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.01, N = 311.17

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: AlexNetIntel UHD 630 CML GT2918273645SE +/- 0.09, N = 337.35

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: AlexNetIntel UHD 630 CML GT2918273645SE +/- 0.05, N = 337.11

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: AlexNetIntel UHD 630 CML GT2816243240SE +/- 0.04, N = 332.96

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: AlexNetIntel UHD 630 CML GT2714212835SE +/- 0.03, N = 328.20

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetIntel UHD 630 CML GT2510152025SE +/- 0.02, N = 321.64

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: VGG-16Intel UHD 630 CML GT20.22730.45460.68190.90921.1365SE +/- 0.01, N = 31.01

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: VGG-16Intel UHD 630 CML GT20.35330.70661.05991.41321.7665SE +/- 0.01, N = 91.57

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16Intel UHD 630 CML GT20.41630.83261.24891.66522.0815SE +/- 0.02, N = 31.85

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet QuantIntel UHD 630 CML GT214002800420056007000SE +/- 9.78, N = 36530.93

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet FloatIntel UHD 630 CML GT211002200330044005500SE +/- 29.59, N = 35296.02

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet MobileIntel UHD 630 CML GT24K8K12K16K20KSE +/- 33.84, N = 316980.6

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4Intel UHD 630 CML GT220K40K60K80K100KSE +/- 248.73, N = 394854.7

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetIntel UHD 630 CML GT22K4K6K8K10KSE +/- 108.14, N = 37954.00

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28Intel UHD 630 CML GT2612182430SE +/- 0.07, N = 324.621. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

R Benchmark

This test is a quick-running survey of general R performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterR BenchmarkIntel UHD 630 CML GT20.05940.11880.17820.23760.297SE +/- 0.0005, N = 30.26401. R scripting front-end version 3.6.3 (2020-02-29)

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6Acceleration: CPUIntel UHD 630 CML GT220406080100SE +/- 0.13, N = 3110.86

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkIntel UHD 630 CML GT270140210280350SE +/- 0.68, N = 3335.66

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 27.17, N = 36433.01MIN: 6346.351. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 19.97, N = 39956.01MIN: 9856.611. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 21.62, N = 36376.18MIN: 6301.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 24.01, N = 39995.81MIN: 9891.051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 38.22, N = 36419.16MIN: 6303.541. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 3.69, N = 39905.23MIN: 9834.561. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT2246810SE +/- 0.02067, N = 37.61768MIN: 7.441. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT20.96261.92522.88783.85044.813SE +/- 0.04286, N = 34.27840MIN: 4.161. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT21224364860SE +/- 0.05, N = 351.15MIN: 50.091. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT248121620SE +/- 0.09, N = 314.72MIN: 14.151. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT21326395265SE +/- 0.02, N = 359.20MIN: 58.571. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT21.17252.3453.51754.695.8625SE +/- 0.01002, N = 35.21109MIN: 4.781. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT20.69071.38142.07212.76283.4535SE +/- 0.01193, N = 33.06986MIN: 2.981. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT2714212835SE +/- 0.09, N = 328.14MIN: 27.621. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT23691215SE +/- 0.04, N = 312.58MIN: 12.191. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: BLASIntel UHD 630 CML GT2306090120150SE +/- 1.00, N = 31501. (CXX) g++ options: -flto -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Plot Non-Negative Matrix Factorization

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: KeyError:

Benchmark: Isotonic / Perturbed Logarithm

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: RCV1 Logreg Convergencet

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: IndexError: list index out of range

Benchmark: Isotonic / Pathological

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Plot Parallel Pairwise

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: numpy.core._exceptions.MemoryError: Unable to allocate 74.5 GiB for an array with shape (100000, 100000) and data type float64

Benchmark: Isotonic / Logistic

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Plot Fast KMeans

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Isolation Forest

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: SGDOneClassSVM

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Benchmark: Glmnet

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'glmnet.elastic_net'

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

Benchmark: scikit_linearridgeregression

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Benchmark: scikit_qda

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. E: AttributeError: module 'numpy' has no attribute 'typeDict'

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: GPT-2 - Device: CPU - Executor: Standard

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: GPT-2 - Device: CPU - Executor: Parallel

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

ECP-CANDLE

The CANDLE benchmark codes implement deep learning architectures relevant to problems in cancer. These architectures address problems at different biological scales, specifically problems at the molecular, cellular and population scales. Learn more via the OpenBenchmarking.org test page.

Benchmark: P3B2

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. E: ImportError: initialization failed

Benchmark: P3B1

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. E: ImportError: initialization failed

Benchmark: P1B2

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. E: ImportError: initialization failed

spaCy

The spaCy library is an open-source solution for advanced neural language processing (NLP). The spaCy library leverages Python and is a leading neural language processing solution. This test profile times the spaCy CPU performance with various models. Learn more via the OpenBenchmarking.org test page.

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: TypeError: issubclass() arg 1 must be a class

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

Device: CPU - Batch Size: 512 - Model: ResNet-50

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 512 - Model: GoogLeNet

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Device: CPU - Batch Size: 256 - Model: ResNet-50

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: ResNet-50Intel UHD 630 CML GT20.6211.2421.8632.4843.105SE +/- 0.10, N = 92.76

Device: CPU - Batch Size: 512 - Model: VGG-16

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Aborted

Device: CPU - Batch Size: 256 - Model: VGG-16

Intel UHD 630 CML GT2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Aborted

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2Intel UHD 630 CML GT240K80K120K160K200KSE +/- 94258.60, N = 15179365.3

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT23691215SE +/- 0.32, N = 1511.97MIN: 10.871. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

Intel UHD 630 CML GT2: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

234 Results Shown

OpenCV
Whisper.cpp:
  ggml-medium.en - 2016 State of the Union
  ggml-small.en - 2016 State of the Union
  ggml-base.en - 2016 State of the Union
Scikit-Learn:
  Sparse Rand Projections / 100 Iterations
  Kernel PCA Solvers / Time vs. N Components
  Kernel PCA Solvers / Time vs. N Samples
  Hist Gradient Boosting Categorical Only
  Plot Polynomial Kernel Approximation
  20 Newsgroups / Logistic Regression
  Hist Gradient Boosting Higgs Boson
  Plot Singular Value Decomposition
  Hist Gradient Boosting Threading
  Hist Gradient Boosting Adult
  Covertype Dataset Benchmark
  Sample Without Replacement
  Hist Gradient Boosting
  Plot Incremental PCA
  TSNE MNIST Dataset
  LocalOutlierFactor
  Feature Expansions
  Plot OMP vs. LARS
  Plot Hierarchical
  Text Vectorizers
  Plot Lasso Path
  SGD Regression
  Plot Neighbors
  MNIST Dataset
  Plot Ward
  Sparsify
  Lasso
  Tree
  SAGA
  GLM
Mlpack Benchmark:
  scikit_svm
  scikit_ica
Numenta Anomaly Benchmark:
  Contextual Anomaly Detector OSE
  Bayesian Changepoint
  Earthgecko Skyline
  Windowed Gaussian
  Relative Entropy
  KNN CAD
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
PlaidML:
  No - Inference - ResNet 50 - CPU
  No - Inference - VGG16 - CPU
TNN:
  CPU - SqueezeNet v1.1
  CPU - SqueezeNet v2
  CPU - MobileNet v2
  CPU - DenseNet
NCNN:
  Vulkan GPU - FastestDet
  Vulkan GPU - vision_transformer
  Vulkan GPU - regnety_400m
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - yolov4-tiny
  Vulkan GPU - resnet50
  Vulkan GPU - alexnet
  Vulkan GPU - resnet18
  Vulkan GPU - vgg16
  Vulkan GPU - googlenet
  Vulkan GPU - blazeface
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - mnasnet
  Vulkan GPU - shufflenet-v2
  Vulkan GPU-v3-v3 - mobilenet-v3
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU - mobilenet
  CPU - FastestDet
  CPU - vision_transformer
  CPU - regnety_400m
  CPU - squeezenet_ssd
  CPU - yolov4-tiny
  CPU - resnet50
  CPU - alexnet
  CPU - resnet18
  CPU - vgg16
  CPU - googlenet
  CPU - blazeface
  CPU - efficientnet-b0
  CPU - mnasnet
  CPU - shufflenet-v2
  CPU-v3-v3 - mobilenet-v3
  CPU-v2-v2 - mobilenet-v2
  CPU - mobilenet
Mobile Neural Network:
  inception-v3
  mobilenet-v1-1.0
  MobileNetV2_224
  SqueezeNetV1.0
  resnet-v2-50
  squeezenetv1.1
  mobilenetV3
  nasnet
Caffe:
  GoogleNet - CPU - 1000
  GoogleNet - CPU - 200
  GoogleNet - CPU - 100
  AlexNet - CPU - 1000
  AlexNet - CPU - 200
  AlexNet - CPU - 100
Neural Magic DeepSparse:
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
    items/sec
TensorFlow:
  CPU - 256 - GoogLeNet
  CPU - 64 - ResNet-50
  CPU - 64 - GoogLeNet
  CPU - 32 - GoogLeNet
  CPU - 16 - ResNet-50
  CPU - 16 - GoogLeNet
  CPU - 512 - AlexNet
  CPU - 256 - AlexNet
  CPU - 64 - AlexNet
  CPU - 32 - AlexNet
  CPU - 16 - AlexNet
  CPU - 64 - VGG-16
  CPU - 32 - VGG-16
  CPU - 16 - VGG-16
TensorFlow Lite:
  Mobilenet Quant
  Mobilenet Float
  NASNet Mobile
  Inception V4
  SqueezeNet
RNNoise
R Benchmark
DeepSpeech
Numpy Benchmark
oneDNN:
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Inference - f32 - CPU
  Recurrent Neural Network Training - f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - f32 - CPU
  Convolution Batch Shapes Auto - f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
  IP Shapes 3D - f32 - CPU
  IP Shapes 1D - f32 - CPU
LeelaChessZero
TensorFlow
TensorFlow Lite
oneDNN