m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2

AMD Ryzen 9 7940HS testing with a Win element M600 (SR500P03_P5C2V07 BIOS) and AMD Phoenix1 16GB on EndeavourOS rolling via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2309028-NE-M6007940H04
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2
September 01 2023
  14 Hours, 30 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2OpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 7940HS @ 4.00GHz (8 Cores / 16 Threads)Win element M600 (SR500P03_P5C2V07 BIOS)AMD Device 14e880GBWestern Digital WD_BLACK SN850X 2000GBAMD Phoenix1 16GBAMD Rembrandt Radeon HD AudioDELL S3422DW2 x Realtek RTL8125 2.5GbE + Intel Wi-Fi 6 AX200EndeavourOS rolling6.4.12-arch1-1 (x86_64)Xfce 4.18X Server 1.21.1.84.6 Mesa 23.1.6-arch1.4 (LLVM 16.0.6 DRM 3.52)GCC 13.2.1 20230801ext43440x1440ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionM600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2 BenchmarksSystem Logs- Transparent Huge Pages: always- --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa704101- GLAMOR - BAR1 / Visible vRAM Size: 16384 MB- Python 3.11.5- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2numpy: tensorflow-lite: SqueezeNettensorflow-lite: Inception V4tensorflow-lite: NASNet Mobiletensorflow-lite: Mobilenet Floattensorflow-lite: Mobilenet Quanttensorflow-lite: Inception ResNet V2onednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUonednn: IP Shapes 3D - bf16bf16bf16 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUncnn: CPU - mobilenetncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU - shufflenet-v2ncnn: CPU - mnasnetncnn: CPU - efficientnet-b0ncnn: CPU - blazefacencnn: CPU - googlenetncnn: CPU - vgg16ncnn: CPU - resnet18ncnn: CPU - alexnetncnn: CPU - resnet50ncnn: CPU - yolov4-tinyncnn: CPU - squeezenet_ssdncnn: CPU - regnety_400mncnn: CPU - vision_transformerncnn: CPU - FastestDetncnn: Vulkan GPU - mobilenetncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - googlenetncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - FastestDetdeepspeech: CPUrnnoise: numenta-nab: KNN CADnumenta-nab: Relative Entropynumenta-nab: Windowed Gaussiannumenta-nab: Earthgecko Skylinenumenta-nab: Bayesian Changepointnumenta-nab: Contextual Anomaly Detector OSEscikit-learn: GLMscikit-learn: Treescikit-learn: Lassoscikit-learn: Sparsifyscikit-learn: Plot Wardscikit-learn: MNIST Datasetscikit-learn: SGD Regressionscikit-learn: SGDOneClassSVMscikit-learn: Plot Fast KMeansscikit-learn: Plot Hierarchicalscikit-learn: Plot OMP vs. LARSscikit-learn: Feature Expansionsscikit-learn: TSNE MNIST Datasetscikit-learn: Isotonic / Logisticscikit-learn: Hist Gradient Boostingm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2692.941921.5128464.87083.461515.793105.7928085.84.546204.619660.7206561.583511.585792.6599210.53306.749074.504929.063920.9121511.078712672.081436.722718.504.213338.551502.759361409.842714.851402.638.072.432.231.972.183.300.736.3331.144.644.5210.4513.426.305.1453.792.498.242.472.282.012.213.380.756.6631.204.904.9110.3713.606.105.2254.042.4846.9561214.295107.1229.7166.46686.57023.27130.6631649.84244.3203207.145104.14839.65455.463655.585209.017512.427128.612627.893110.195233.6601118.01462.776OpenBenchmarking.org

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

Target: OpenCL - Benchmark: S3D

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Triad

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: FFT SP

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: MD5 Hash

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Reduction

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: GEMM SGEMM_N

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Max SP Flops

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Bus Speed Download

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Bus Speed Readback

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

Target: OpenCL - Benchmark: Texture Read Bandwidth

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Inference - Network: VGG16 - Device: CPU

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: plaidml: line 24: /.local/bin/plaidbench: No such file or directory

FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: plaidml: line 24: /.local/bin/plaidbench: No such file or directory

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

Device: CPU - Batch Size: 16 - Model: VGG-16

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 32 - Model: VGG-16

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 64 - Model: VGG-16

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 16 - Model: AlexNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 256 - Model: VGG-16

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 32 - Model: AlexNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 512 - Model: VGG-16

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 64 - Model: AlexNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 256 - Model: AlexNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 512 - Model: AlexNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 16 - Model: GoogLeNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 16 - Model: ResNet-50

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 32 - Model: GoogLeNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 32 - Model: ResNet-50

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 64 - Model: GoogLeNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 64 - Model: ResNet-50

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 256 - Model: GoogLeNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 256 - Model: ResNet-50

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 512 - Model: GoogLeNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

Device: CPU - Batch Size: 512 - Model: ResNet-50

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'absl'

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

Model: GPT-2 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: GPT-2 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: deepsparse: line 2: /.local/bin/deepsparse.benchmark: No such file or directory

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

Backend: BLAS

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: lczero: line 4: ./lc0: No such file or directory

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy Benchmarkm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2150300450600750SE +/- 5.43, N = 3692.94

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. E: SyntaxError: invalid syntax

spaCy

The spaCy library is an open-source solution for advanced neural language processing (NLP). The spaCy library leverages Python and is a leading neural language processing solution. This test profile times the spaCy CPU performance with various models. Learn more via the OpenBenchmarking.org test page.

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'spacy'

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2400800120016002000SE +/- 5.32, N = 31921.51

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-26K12K18K24K30KSE +/- 57.85, N = 328464.8

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet Mobilem600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-215003000450060007500SE +/- 47.37, N = 37083.46

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Floatm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-230060090012001500SE +/- 9.91, N = 31515.79

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Quantm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-27001400210028003500SE +/- 3.46, N = 33105.79

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-26K12K18K24K30KSE +/- 247.53, N = 328085.8

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

Model: AlexNet - Acceleration: CPU - Iterations: 100

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

Model: AlexNet - Acceleration: CPU - Iterations: 200

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

Model: AlexNet - Acceleration: CPU - Iterations: 1000

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

Model: GoogleNet - Acceleration: CPU - Iterations: 100

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

Model: GoogleNet - Acceleration: CPU - Iterations: 200

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

Model: GoogleNet - Acceleration: CPU - Iterations: 1000

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: caffe: line 3: ./tools/caffe: No such file or directory

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.02292.04583.06874.09165.1145SE +/- 0.04068, N = 34.54620MIN: 3.791. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.03942.07883.11824.15765.197SE +/- 0.04248, N = 64.61966MIN: 4.371. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.16210.32420.48630.64840.8105SE +/- 0.006523, N = 150.720656MIN: 0.571. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.35630.71261.06891.42521.7815SE +/- 0.02084, N = 31.58351MIN: 1.391. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.35680.71361.07041.42721.784SE +/- 0.00921, N = 31.58579MIN: 1.321. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.59851.1971.79552.3942.9925SE +/- 0.01990, N = 32.65992MIN: 2.431. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.11, N = 310.53MIN: 8.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.11025, N = 126.74907MIN: 4.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.01362.02723.04084.05445.068SE +/- 0.13143, N = 154.50492MIN: 4.071. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.04724, N = 39.06392MIN: 8.731. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.20520.41040.61560.82081.026SE +/- 0.003553, N = 30.912151MIN: 0.821. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.24270.48540.72810.97081.2135SE +/- 0.00135, N = 31.07871MIN: 0.961. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-26001200180024003000SE +/- 22.64, N = 82672.08MIN: 2490.391. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-230060090012001500SE +/- 4.68, N = 31436.72MIN: 1361.411. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-26001200180024003000SE +/- 9.78, N = 32718.50MIN: 2636.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.9481.8962.8443.7924.74SE +/- 0.06060, N = 34.21333MIN: 3.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.03672, N = 38.55150MIN: 7.521. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.62091.24181.86272.48363.1045SE +/- 0.00335, N = 32.75936MIN: 2.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-230060090012001500SE +/- 17.30, N = 41409.84MIN: 1312.691. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-26001200180024003000SE +/- 5.55, N = 32714.85MIN: 2634.211. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-230060090012001500SE +/- 2.23, N = 31402.63MIN: 1343.031. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. This MNN test profile is building the OpenMP / CPU threaded version for processor benchmarking and not any GPU-accelerated test. MNN does allow making use of AVX-512 extensions. Learn more via the OpenBenchmarking.org test page.

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: mnn: line 3: ./benchmark.out: No such file or directory

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.01, N = 38.07MIN: 7.82 / MAX: 11.671. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.54681.09361.64042.18722.734SE +/- 0.01, N = 32.43MIN: 2.28 / MAX: 5.611. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.50181.00361.50542.00722.509SE +/- 0.01, N = 32.23MIN: 2.13 / MAX: 5.11. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.44330.88661.32991.77322.2165SE +/- 0.00, N = 31.97MIN: 1.85 / MAX: 6.581. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.49050.9811.47151.9622.4525SE +/- 0.03, N = 32.18MIN: 2.01 / MAX: 5.911. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.74251.4852.22752.973.7125SE +/- 0.03, N = 33.30MIN: 3.09 / MAX: 6.221. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefacem600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.16430.32860.49290.65720.8215SE +/- 0.01, N = 30.73MIN: 0.69 / MAX: 3.561. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.02, N = 36.33MIN: 6.06 / MAX: 9.41. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2714212835SE +/- 0.46, N = 331.14MIN: 30.03 / MAX: 44.671. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.0442.0883.1324.1765.22SE +/- 0.03, N = 34.64MIN: 4.44 / MAX: 7.491. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.0172.0343.0514.0685.085SE +/- 0.03, N = 34.52MIN: 4.35 / MAX: 8.371. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.55, N = 310.45MIN: 9.44 / MAX: 15.881. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinym600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.08, N = 313.42MIN: 12.96 / MAX: 17.771. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.27, N = 36.30MIN: 5.74 / MAX: 10.521. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.15652.3133.46954.6265.7825SE +/- 0.01, N = 35.14MIN: 4.92 / MAX: 11.221. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21224364860SE +/- 0.05, N = 353.79MIN: 51.57 / MAX: 61.951. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.56031.12061.68092.24122.8015SE +/- 0.04, N = 32.49MIN: 2.33 / MAX: 5.651. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.09, N = 38.24MIN: 7.85 / MAX: 12.181. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.55581.11161.66742.22322.779SE +/- 0.03, N = 32.47MIN: 2.28 / MAX: 5.91. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.5131.0261.5392.0522.565SE +/- 0.02, N = 32.28MIN: 2.14 / MAX: 5.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.45230.90461.35691.80922.2615SE +/- 0.01, N = 32.01MIN: 1.9 / MAX: 4.961. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.49730.99461.49191.98922.4865SE +/- 0.02, N = 32.21MIN: 2.08 / MAX: 5.131. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.76051.5212.28153.0423.8025SE +/- 0.06, N = 33.38MIN: 3.17 / MAX: 6.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefacem600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.16880.33760.50640.67520.844SE +/- 0.01, N = 30.75MIN: 0.69 / MAX: 3.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.07, N = 36.66MIN: 6.35 / MAX: 10.741. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2714212835SE +/- 0.02, N = 331.20MIN: 30.51 / MAX: 39.521. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.10252.2053.30754.415.5125SE +/- 0.03, N = 34.90MIN: 4.68 / MAX: 10.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.10482.20963.31444.41925.524SE +/- 0.10, N = 34.91MIN: 4.69 / MAX: 11.391. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.02, N = 310.37MIN: 9.94 / MAX: 16.031. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinym600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.06, N = 313.60MIN: 13.22 / MAX: 18.631. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.02, N = 36.10MIN: 5.84 / MAX: 14.121. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21.17452.3493.52354.6985.8725SE +/- 0.05, N = 35.22MIN: 4.91 / MAX: 8.271. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21224364860SE +/- 0.06, N = 354.04MIN: 52.55 / MAX: 64.521. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-20.5581.1161.6742.2322.79SE +/- 0.05, N = 32.48MIN: 2.34 / MAX: 61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

Target: CPU - Model: DenseNet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: tnn: line 3: ./test/TNNTest: No such file or directory

Target: CPU - Model: MobileNet v2

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: tnn: line 3: ./test/TNNTest: No such file or directory

Target: CPU - Model: SqueezeNet v2

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: tnn: line 3: ./test/TNNTest: No such file or directory

Target: CPU - Model: SqueezeNet v1.1

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: tnn: line 3: ./test/TNNTest: No such file or directory

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6Acceleration: CPUm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21122334455SE +/- 0.02, N = 346.96

R Benchmark

This test is a quick-running survey of general R performance Learn more via the OpenBenchmarking.org test page.

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ERROR: Rscript is not found on the system!

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-248121620SE +/- 0.02, N = 314.301. (CC) gcc options: -O2 -pedantic -fvisibility=hidden -lm

ECP-CANDLE

The CANDLE benchmark codes implement deep learning architectures relevant to problems in cancer. These architectures address problems at different biological scales, specifically problems at the molecular, cellular and population scales. Learn more via the OpenBenchmarking.org test page.

Benchmark: P1B2

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Benchmark: P3B1

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Benchmark: P3B2

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-220406080100SE +/- 0.38, N = 3107.12

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative Entropym600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-23691215SE +/- 0.090, N = 69.716

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed Gaussianm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2246810SE +/- 0.012, N = 36.466

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko Skylinem600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-220406080100SE +/- 0.91, N = 1586.57

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian Changepointm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2612182430SE +/- 0.20, N = 323.27

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2714212835SE +/- 0.17, N = 330.66

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

Benchmark: scikit_ica

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'timeout_decorator'

Benchmark: scikit_qda

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'timeout_decorator'

Benchmark: scikit_svm

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'timeout_decorator'

Benchmark: scikit_linearridgeregression

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'timeout_decorator'

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2400800120016002000SE +/- 2.64, N = 31649.841. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: SAGA

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Treem600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21020304050SE +/- 0.36, N = 1544.321. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Lassom600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-27001400210028003500SE +/- 12.72, N = 33207.151. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: Glmnet

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'glmnet'

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparsifym600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-220406080100SE +/- 0.18, N = 3104.151. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Wardm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2918273645SE +/- 0.04, N = 339.651. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST Datasetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21224364860SE +/- 0.50, N = 355.461. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: Plot Neighbors

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD Regressionm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2140280420560700SE +/- 2.72, N = 3655.591. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGDOneClassSVMm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-250100150200250SE +/- 2.78, N = 3209.021. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: Plot Lasso Path

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: sklearn.utils._param_validation.InvalidParameterError: The 'effective_rank' parameter of make_regression must be an int in the range [1, inf) or None. Got 1.5 instead.

Benchmark: Isolation Forest

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Fast KMeansm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2110220330440550SE +/- 2.66, N = 3512.431. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: Text Vectorizers

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'memory_profiler'

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Hierarchicalm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2306090120150SE +/- 1.33, N = 3128.611. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2140280420560700SE +/- 1.88, N = 3627.891. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature Expansionsm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-220406080100SE +/- 0.08, N = 3110.201. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: LocalOutlierFactor

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST Datasetm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-250100150200250SE +/- 0.28, N = 3233.661. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Logisticm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-22004006008001000SE +/- 4.00, N = 31118.011. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Benchmark: Plot Incremental PCA

m600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-2: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boostingm600_7940hs-96gb-5600mhz-16gb-igpu-performance-tpd-2tb-sn850x-2023-09-01-21428425670SE +/- 0.08, N = 362.781. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

85 Results Shown

Numpy Benchmark
TensorFlow Lite:
  SqueezeNet
  Inception V4
  NASNet Mobile
  Mobilenet Float
  Mobilenet Quant
  Inception ResNet V2
oneDNN:
  IP Shapes 1D - f32 - CPU
  IP Shapes 3D - f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
  IP Shapes 1D - bf16bf16bf16 - CPU
  IP Shapes 3D - bf16bf16bf16 - CPU
  Convolution Batch Shapes Auto - f32 - CPU
  Deconvolution Batch shapes_1d - f32 - CPU
  Deconvolution Batch shapes_3d - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
  Recurrent Neural Network Training - f32 - CPU
  Recurrent Neural Network Inference - f32 - CPU
  Recurrent Neural Network Training - u8s8f32 - CPU
  Convolution Batch Shapes Auto - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_1d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_3d - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
NCNN:
  CPU - mobilenet
  CPU-v2-v2 - mobilenet-v2
  CPU-v3-v3 - mobilenet-v3
  CPU - shufflenet-v2
  CPU - mnasnet
  CPU - efficientnet-b0
  CPU - blazeface
  CPU - googlenet
  CPU - vgg16
  CPU - resnet18
  CPU - alexnet
  CPU - resnet50
  CPU - yolov4-tiny
  CPU - squeezenet_ssd
  CPU - regnety_400m
  CPU - vision_transformer
  CPU - FastestDet
  Vulkan GPU - mobilenet
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU-v3-v3 - mobilenet-v3
  Vulkan GPU - shufflenet-v2
  Vulkan GPU - mnasnet
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - blazeface
  Vulkan GPU - googlenet
  Vulkan GPU - vgg16
  Vulkan GPU - resnet18
  Vulkan GPU - alexnet
  Vulkan GPU - resnet50
  Vulkan GPU - yolov4-tiny
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - regnety_400m
  Vulkan GPU - vision_transformer
  Vulkan GPU - FastestDet
DeepSpeech
RNNoise
Numenta Anomaly Benchmark:
  KNN CAD
  Relative Entropy
  Windowed Gaussian
  Earthgecko Skyline
  Bayesian Changepoint
  Contextual Anomaly Detector OSE
Scikit-Learn:
  GLM
  Tree
  Lasso
  Sparsify
  Plot Ward
  MNIST Dataset
  SGD Regression
  SGDOneClassSVM
  Plot Fast KMeans
  Plot Hierarchical
  Plot OMP vs. LARS
  Feature Expansions
  TSNE MNIST Dataset
  Isotonic / Logistic
  Hist Gradient Boosting