AMD Ryzen 9 7950X AVX-512

AMD Ryzen 9 7950X AVX-512 benchmark comparison by Michael Larabel launch day embargo lift review. Stock/out-of-the-box build with AVX-512. For lack of any AVX-512 toggle from the ASUS BIOS, the AVX2 / non-AVX-512 run was carried out by booting kernel with "clearcpuid=304" to clear AVX-512 support from the kernel and for the binary programs that scan /proc/cpuinfo for avx512* extensions. Plus for the open-source benchmarks specifying CFLAGS/CXXFLAGS without AVX-512 extensions. See full launch day review @ https://www.phoronix.com/review/amd-zen4-avx512

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2209253-NE-RYZEN795065
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Default, AVX-512 Enabled
September 17 2022
  4 Hours, 11 Minutes
Without AVX-512
September 17 2022
  3 Hours, 57 Minutes
Invert Behavior (Only Show Selected Data)
  4 Hours, 4 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


AMD Ryzen 9 7950X AVX-512OpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads)ASUS ROG CROSSHAIR X670E HERO (0604 BIOS)AMD Device 14d832GB2000GB Samsung SSD 980 PRO 2TB + 2000GBAMD Radeon RX 6800 XT 16GB (2575/1000MHz)AMD Navi 21 HDMI AudioASUS VP28UIntel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411Ubuntu 22.046.0.0-060000rc1daily20220820-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.3.0-devel (git-4685385 2022-08-23 jammy-oibaf-ppa) (LLVM 14.0.6 DRM 3.48)1.3.224GCC 12.0.1 20220319ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionAMD Ryzen 9 7950X AVX-512 BenchmarksSystem Logs- Transparent Huge Pages: madvise- Without AVX-512: CXXFLAGS="-O3 -march=native -mno-avx512f" CFLAGS="-O3 -march=native -mno-avx512f"- Default, AVX-512 Enabled: CXXFLAGS="-O3 -march=native -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -mprefer-vector-width=512" CFLAGS="-O3 -march=native -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -mprefer-vector-width=512" - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-OcsLtf/gcc-12-12-20220319/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-OcsLtf/gcc-12-12-20220319/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate performance (Boost: Enabled) - CPU Microcode: 0xa601203- Python 3.10.4- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

Without AVX-512 vs. Default, AVX-512 Enabled ComparisonPhoronix Test SuiteBaseline+66.4%+66.4%+132.8%+132.8%+199.2%+199.2%+265.6%+265.6%265.7%117.1%117%115.1%114.4%113.7%113.6%109.1%108.6%104.5%103.8%103.8%100%100%98.2%98.1%97.1%92.4%88%87%86.8%83.1%80.2%79.9%79.8%78.9%77.6%70.8%68.2%66.9%58.6%56.1%54.8%53.1%50%48%47.9%40%39.3%37.7%37.4%35.7%32.6%30.1%26.1%25.4%23%22.4%21.4%21.1%21%20.7%20.1%20%15.6%14%12.8%9.9%8.3%3.4%2.8%Myriad-GroestlW.P.D.F.I - CPUW.P.D.F.I - CPUF.D.F - CPUF.D.F - CPUW.P.D.F - CPUW.P.D.F - CPUF.D.F.I - CPUF.D.F.I - CPUBlake-2 SM.T.E.T.D.F - CPUM.T.E.T.D.F - CPUA.G.R.R.0.F - CPUA.G.R.R.0.F - CPUV.D.F.I - CPUV.D.F.I - CPULBC, LBRY CreditsD.B.s - u8s8f32 - CPUD.B.s - u8s8f32 - CPUP.V.B.D.F - CPUP.V.B.D.F - CPUgravity_spheres_volume/dim_512/scivis/real_timeP.D.F - CPUP.D.F - CPUP.D.F - CPUP.D.F - CPUgravity_spheres_volume/dim_512/ao/real_timeA.G.R.R.0.F.I - CPUA.G.R.R.0.F.I - CPUQ.S.2.PCPU - vision_transformerR.N.N.I - u8s8f32 - CPUR.N.N.I - bf16bf16bf16 - CPUGarlicoinIP Shapes 1D - u8s8f32 - CPUV.D.F - CPUV.D.F - CPUC.B.S.A - u8s8f32 - CPUSkeincoinR.N.N.T - u8s8f32 - CPUgravity_spheres_volume/dim_512/pathtracer/real_timeR.N.N.T - bf16bf16bf16 - CPUDistinctUserIDvklBenchmark ISPCTopTweetPartialTweets1 - 4K - 1 - Path Tracer3 - 4K - 1 - Path TracerKostya1 - 4K - 32 - Path TracerPathtracer ISPC - Crown1 - 4K - 16 - Path Tracer3 - 4K - 32 - Path Tracer3 - 4K - 16 - Path TracerPathtracer ISPC - Asian DragonLargeRandSqueezeNetV1.0Eigenparticle_volume/pathtracer/real_timeSummer Nature 4KS.N.1Cpuminer-OptOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOCpuminer-OptOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOCpuminer-OptoneDNNoneDNNOpenVINOOpenVINOOSPRayOpenVINOOpenVINOOpenVINOOpenVINOOSPRayOpenVINOOpenVINOCpuminer-OptNCNNoneDNNoneDNNCpuminer-OptoneDNNOpenVINOOpenVINOoneDNNCpuminer-OptoneDNNOSPRayoneDNNsimdjsonOpenVKLsimdjsonsimdjsonOSPRay StudioOSPRay StudiosimdjsonOSPRay StudioEmbreeOSPRay StudioOSPRay StudioOSPRay StudioEmbreesimdjsonMobile Neural NetworkLeelaChessZeroOSPRaydav1ddav1dWithout AVX-512Default, AVX-512 Enabled

AMD Ryzen 9 7950X AVX-512ospray: particle_volume/pathtracer/real_timelczero: Eigenopenvkl: vklBenchmark ISPCmnn: SqueezeNetV1.0ospray-studio: 3 - 4K - 32 - Path Tracerospray-studio: 3 - 4K - 1 - Path Tracerospray-studio: 1 - 4K - 1 - Path Tracerospray-studio: 1 - 4K - 32 - Path Tracerospray: gravity_spheres_volume/dim_512/scivis/real_timeospray: gravity_spheres_volume/dim_512/ao/real_timeospray: gravity_spheres_volume/dim_512/pathtracer/real_timecpuminer-opt: Myriad-Groestlsimdjson: Kostyaospray-studio: 3 - 4K - 16 - Path Tracersimdjson: LargeRandcpuminer-opt: Garlicoincpuminer-opt: Blake-2 Sonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUospray-studio: 1 - 4K - 16 - Path Traceropenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUsimdjson: DistinctUserIDopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUsimdjson: PartialTweetssimdjson: TopTweetopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUncnn: CPU - vision_transformeropenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUcpuminer-opt: LBC, LBRY Creditscpuminer-opt: Quad SHA-256, Pyritecpuminer-opt: Skeincoinonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUembree: Pathtracer ISPC - Crownembree: Pathtracer ISPC - Asian Dragondav1d: Summer Nature 4Konednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUdav1d: Summer Nature 1080pWithout AVX-512Default, AVX-512 Enabled231.37815781533.997172872534845021461564.333984.535296.92227163934.95883441.572597.6510337001566.091544.39910.460902.102748441889.404.201887.134.207.741178.816.747.697.90585.8113.60121.0666.038.80907.3662.740.4138316.878.38953.790.722781.7015.92502.2811.73681.3711.811353.840.625942769601926672043200.80011629.117030.3870380.327.449361.083961412.27250.65517351993.543143981436836591207277.934328.053979.50906599576.01736171.793977.8021134341137.291137.96583.316582.901620291050.377.571054.927.5510.26549.9414.509.649.96280.8628.4459.39134.594.711696.8239.570.2464463.944.231890.250.3545555.6710.76742.905.491455.455.442938.130.4171961517203215032846670.41594035.229335.1217393.405.321270.5764321451.94OpenBenchmarking.org

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: particle_volume/pathtracer/real_timeDefault, AVX-512 EnabledWithout AVX-51250100150200250SE +/- 0.91, N = 3SE +/- 0.59, N = 3250.66231.38

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: EigenDefault, AVX-512 EnabledWithout AVX-512400800120016002000SE +/- 7.31, N = 3SE +/- 16.33, N = 317351578-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -flto -O3 -march=native -pthread

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.0Benchmark: vklBenchmark ISPCDefault, AVX-512 EnabledWithout AVX-5124080120160200SE +/- 0.33, N = 3SE +/- 0.00, N = 3199153MIN: 17 / MAX: 2254MIN: 14 / MAX: 1843

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. This MNN test profile is building the OpenMP / CPU threaded version for processor benchmarking and not any GPU-accelerated test. MNN does allow making use of AVX-512 extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Default, AVX-512 EnabledWithout AVX-5120.89931.79862.69793.59724.4965SE +/- 0.015, N = 6SE +/- 0.121, N = 33.5433.997-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 3.43 / MAX: 10.23-mno-avx512f - MIN: 3.72 / MAX: 5.691. (CXX) g++ options: -O3 -march=native -std=c++11 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51240K80K120K160K200KSE +/- 116.66, N = 3SE +/- 155.59, N = 3143981172872-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51211002200330044005500SE +/- 5.55, N = 3SE +/- 3.28, N = 343685348-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51210002000300040005000SE +/- 5.21, N = 3SE +/- 6.51, N = 336594502-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51230K60K90K120K150KSE +/- 140.99, N = 3SE +/- 168.25, N = 3120727146156-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/scivis/real_timeDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.03212, N = 3SE +/- 0.00159, N = 37.934324.33398

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/ao/real_timeDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.00437, N = 3SE +/- 0.00574, N = 38.053974.53529

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_timeDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.00541, N = 3SE +/- 0.00119, N = 39.509066.92227

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Myriad-GroestlDefault, AVX-512 EnabledWithout AVX-51213K26K39K52K65KSE +/- 669.95, N = 15SE +/- 105.88, N = 35995716393-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: KostyaDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.04, N = 3SE +/- 0.00, N = 36.014.95-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51220K40K60K80K100KSE +/- 149.41, N = 3SE +/- 7.57, N = 37361788344-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: LargeRandomDefault, AVX-512 EnabledWithout AVX-5120.40280.80561.20841.61122.014SE +/- 0.00, N = 3SE +/- 0.00, N = 31.791.57-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: GarlicoinDefault, AVX-512 EnabledWithout AVX-5129001800270036004500SE +/- 75.31, N = 12SE +/- 25.96, N = 33977.802597.65-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Blake-2 SDefault, AVX-512 EnabledWithout AVX-512500K1000K1500K2000K2500KSE +/- 38034.65, N = 12SE +/- 4192.40, N = 321134341033700-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-51230060090012001500SE +/- 1.54, N = 3SE +/- 8.37, N = 31137.291566.09-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 1130.88-mno-avx512f - MIN: 1541.571. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-51230060090012001500SE +/- 1.66, N = 3SE +/- 19.60, N = 31137.961544.39-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 1131.23-mno-avx512f - MIN: 1494.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-5122004006008001000SE +/- 0.21, N = 3SE +/- 3.36, N = 3583.32910.46-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 579.29-mno-avx512f - MIN: 898.051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-5122004006008001000SE +/- 1.02, N = 3SE +/- 5.88, N = 3582.90902.10-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 578.18-mno-avx512f - MIN: 885.671. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path TracerDefault, AVX-512 EnabledWithout AVX-51216K32K48K64K80KSE +/- 138.54, N = 3SE +/- 91.34, N = 36202974844-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512400800120016002000SE +/- 2.40, N = 3SE +/- 0.47, N = 31050.371889.40-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 604.91 / MAX: 1254.32-mno-avx512f - MIN: 1032.21 / MAX: 2215.281. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.02, N = 3SE +/- 0.00, N = 37.574.20-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Detection FP32 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512400800120016002000SE +/- 3.05, N = 3SE +/- 5.93, N = 31054.921887.13-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 641.2 / MAX: 1276.51-mno-avx512f - MIN: 1054.92 / MAX: 2161.51. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Detection FP32 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.02, N = 3SE +/- 0.02, N = 37.554.20-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: DistinctUserIDDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.06, N = 3SE +/- 0.07, N = 310.267.74-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Face Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51230060090012001500SE +/- 0.48, N = 3SE +/- 0.92, N = 3549.941178.81-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 282.71 / MAX: 577.01-mno-avx512f - MIN: 596.16 / MAX: 1250.721. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Face Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51248121620SE +/- 0.01, N = 3SE +/- 0.01, N = 314.506.74-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: PartialTweetsDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.08, N = 3SE +/- 0.01, N = 39.647.69-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: TopTweetDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.09, N = 3SE +/- 0.02, N = 39.967.90-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Face Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512130260390520650SE +/- 0.17, N = 3SE +/- 0.73, N = 3280.86585.81-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 263.49 / MAX: 294.78-mno-avx512f - MIN: 556.1 / MAX: 5961. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Face Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512714212835SE +/- 0.01, N = 3SE +/- 0.02, N = 328.4413.60-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Machine Translation EN To DE FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512306090120150SE +/- 0.18, N = 3SE +/- 0.21, N = 359.39121.06-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 26.85 / MAX: 70.78-mno-avx512f - MIN: 57.76 / MAX: 141.81. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Machine Translation EN To DE FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512306090120150SE +/- 0.42, N = 3SE +/- 0.12, N = 3134.5966.03-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.01, N = 3SE +/- 0.01, N = 34.718.80-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 3.46 / MAX: 12.8-mno-avx512f - MIN: 5.34 / MAX: 19.181. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512400800120016002000SE +/- 3.05, N = 3SE +/- 1.39, N = 31696.82907.36-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20220729Target: CPU - Model: vision_transformerDefault, AVX-512 EnabledWithout AVX-5121428425670SE +/- 0.03, N = 3SE +/- 0.91, N = 339.5762.74-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 39.32 / MAX: 41.99-mno-avx512f - MIN: 61.57 / MAX: 65.211. (CXX) g++ options: -O3 -march=native -rdynamic -lgomp -lpthread

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-5120.09230.18460.27690.36920.4615SE +/- 0.00, N = 3SE +/- 0.00, N = 30.240.41-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.15 / MAX: 7.55-mno-avx512f - MIN: 0.22 / MAX: 7.871. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51214K28K42K56K70KSE +/- 24.16, N = 3SE +/- 43.53, N = 364463.9438316.87-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.01, N = 3SE +/- 0.01, N = 34.238.38-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.63 / MAX: 12.45-mno-avx512f - MIN: 4.65 / MAX: 17.131. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512400800120016002000SE +/- 2.10, N = 3SE +/- 0.65, N = 31890.25953.79-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-5120.15750.3150.47250.630.7875SE +/- 0.00, N = 3SE +/- 0.00, N = 30.350.70-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.21 / MAX: 7.78-mno-avx512f - MIN: 0.39 / MAX: 8.821. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51210K20K30K40K50KSE +/- 43.30, N = 3SE +/- 51.81, N = 345555.6722781.70-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51248121620SE +/- 0.12, N = 3SE +/- 0.16, N = 310.7615.92-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 4.25 / MAX: 23.39-mno-avx512f - MIN: 6.75 / MAX: 34.351. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-512160320480640800SE +/- 8.04, N = 3SE +/- 5.20, N = 3742.90502.28-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.00, N = 3SE +/- 0.01, N = 35.4911.73-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.89 / MAX: 13.22-mno-avx512f - MIN: 6.24 / MAX: 20.451. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16 - Device: CPUDefault, AVX-512 EnabledWithout AVX-51230060090012001500SE +/- 1.06, N = 3SE +/- 0.52, N = 31455.45681.37-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-5123691215SE +/- 0.01, N = 3SE +/- 0.02, N = 35.4411.81-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.88 / MAX: 13.32-mno-avx512f - MIN: 6.9 / MAX: 19.21. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUDefault, AVX-512 EnabledWithout AVX-5126001200180024003000SE +/- 4.82, N = 3SE +/- 2.11, N = 32938.131353.84-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-5120.14080.28160.42240.56320.704SE +/- 0.007969, N = 15SE +/- 0.006181, N = 50.4171960.625942-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.34-mno-avx512f - MIN: 0.581. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: LBC, LBRY CreditsDefault, AVX-512 EnabledWithout AVX-51230K60K90K120K150KSE +/- 177.76, N = 3SE +/- 40.41, N = 315172076960-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Quad SHA-256, PyriteDefault, AVX-512 EnabledWithout AVX-51270K140K210K280K350KSE +/- 1040.42, N = 3SE +/- 177.04, N = 3321503192667-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: SkeincoinDefault, AVX-512 EnabledWithout AVX-51260K120K180K240K300KSE +/- 424.91, N = 3SE +/- 1803.62, N = 3284667204320-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi-mno-avx512f1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-5120.180.360.540.720.9SE +/- 0.000107, N = 3SE +/- 0.010456, N = 30.4159400.800116-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.4-mno-avx512f - MIN: 0.761. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.13Binary: Pathtracer ISPC - Model: CrownDefault, AVX-512 EnabledWithout AVX-512816243240SE +/- 0.08, N = 3SE +/- 0.11, N = 335.2329.12MIN: 34.75 / MAX: 36.08MIN: 28.7 / MAX: 29.86

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.13Binary: Pathtracer ISPC - Model: Asian DragonDefault, AVX-512 EnabledWithout AVX-512816243240SE +/- 0.08, N = 3SE +/- 0.16, N = 335.1230.39MIN: 34.64 / MAX: 36.13MIN: 29.85 / MAX: 30.94

dav1d

Dav1d is an open-source, speedy AV1 video decoder. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.0Video Input: Summer Nature 4KDefault, AVX-512 EnabledWithout AVX-51290180270360450SE +/- 1.37, N = 5SE +/- 3.22, N = 5393.40380.32-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -lm-mno-avx512f1. (CC) gcc options: -O3 -march=native -pthread

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-512246810SE +/- 0.00255, N = 7SE +/- 0.00637, N = 75.321277.44936-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 5.26-mno-avx512f - MIN: 7.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUDefault, AVX-512 EnabledWithout AVX-5120.24390.48780.73170.97561.2195SE +/- 0.001581, N = 9SE +/- 0.006665, N = 90.5764321.083960-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.56-mno-avx512f - MIN: 1.031. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

dav1d

Dav1d is an open-source, speedy AV1 video decoder. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.0Video Input: Summer Nature 1080pDefault, AVX-512 EnabledWithout AVX-51230060090012001500SE +/- 1.72, N = 10SE +/- 2.53, N = 101451.941412.27-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -lm-mno-avx512f1. (CC) gcc options: -O3 -march=native -pthread

CPU Temperature Monitor

OpenBenchmarking.orgCelsiusCPU Temperature MonitorPhoronix Test Suite System MonitoringDefault, AVX-512 EnabledWithout AVX-51220406080100Min: 33.63 / Avg: 81.24 / Max: 96.25Min: 36.13 / Avg: 84.12 / Max: 96.75

CPU Power Consumption Monitor

OpenBenchmarking.orgWattsCPU Power Consumption MonitorPhoronix Test Suite System MonitoringDefault, AVX-512 EnabledWithout AVX-5124080120160200Min: 11.53 / Avg: 158.06 / Max: 237.76Min: 10.2 / Avg: 161.11 / Max: 235.88

CPU Peak Freq (Highest CPU Core Frequency) Monitor

OpenBenchmarking.orgMegahertzCPU Peak Freq (Highest CPU Core Frequency) MonitorPhoronix Test Suite System MonitoringDefault, AVX-512 EnabledWithout AVX-51210002000300040005000Min: 4421 / Avg: 5372.19 / Max: 5881Min: 4495 / Avg: 5334.93 / Max: 5881

64 Results Shown

OSPRay
LeelaChessZero
OpenVKL
Mobile Neural Network
OSPRay Studio:
  3 - 4K - 32 - Path Tracer
  3 - 4K - 1 - Path Tracer
  1 - 4K - 1 - Path Tracer
  1 - 4K - 32 - Path Tracer
OSPRay:
  gravity_spheres_volume/dim_512/scivis/real_time
  gravity_spheres_volume/dim_512/ao/real_time
  gravity_spheres_volume/dim_512/pathtracer/real_time
Cpuminer-Opt
simdjson
OSPRay Studio
simdjson
Cpuminer-Opt:
  Garlicoin
  Blake-2 S
oneDNN:
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
OSPRay Studio
OpenVINO:
  Person Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
simdjson
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
simdjson:
  PartialTweets
  TopTweet
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
NCNN
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
oneDNN
Cpuminer-Opt:
  LBC, LBRY Credits
  Quad SHA-256, Pyrite
  Skeincoin
oneDNN
Embree:
  Pathtracer ISPC - Crown
  Pathtracer ISPC - Asian Dragon
dav1d
oneDNN:
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
dav1d
CPU Temperature Monitor:
  Phoronix Test Suite System Monitoring:
    Celsius
    Watts
    Megahertz