AMD Ryzen 9 7950X AVX-512

AMD Ryzen 9 7950X AVX-512 benchmark comparison by Michael Larabel launch day embargo lift review. Stock/out-of-the-box build with AVX-512. For lack of any AVX-512 toggle from the ASUS BIOS, the AVX2 / non-AVX-512 run was carried out by booting kernel with "clearcpuid=304" to clear AVX-512 support from the kernel and for the binary programs that scan /proc/cpuinfo for avx512* extensions. Plus for the open-source benchmarks specifying CFLAGS/CXXFLAGS without AVX-512 extensions. See full launch day review @ https://www.phoronix.com/review/amd-zen4-avx512

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2209253-NE-RYZEN795065
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Default, AVX-512 Enabled
September 17 2022
  4 Hours, 11 Minutes
Without AVX-512
September 17 2022
  3 Hours, 57 Minutes
Invert Behavior (Only Show Selected Data)
  4 Hours, 4 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


AMD Ryzen 9 7950X AVX-512OpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads)ASUS ROG CROSSHAIR X670E HERO (0604 BIOS)AMD Device 14d832GB2000GB Samsung SSD 980 PRO 2TB + 2000GBAMD Radeon RX 6800 XT 16GB (2575/1000MHz)AMD Navi 21 HDMI AudioASUS VP28UIntel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411Ubuntu 22.046.0.0-060000rc1daily20220820-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.3.0-devel (git-4685385 2022-08-23 jammy-oibaf-ppa) (LLVM 14.0.6 DRM 3.48)1.3.224GCC 12.0.1 20220319ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionAMD Ryzen 9 7950X AVX-512 BenchmarksSystem Logs- Transparent Huge Pages: madvise- Without AVX-512: CXXFLAGS="-O3 -march=native -mno-avx512f" CFLAGS="-O3 -march=native -mno-avx512f"- Default, AVX-512 Enabled: CXXFLAGS="-O3 -march=native -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -mprefer-vector-width=512" CFLAGS="-O3 -march=native -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -mprefer-vector-width=512" - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-OcsLtf/gcc-12-12-20220319/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-OcsLtf/gcc-12-12-20220319/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate performance (Boost: Enabled) - CPU Microcode: 0xa601203- Python 3.10.4- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

Without AVX-512 vs. Default, AVX-512 Enabled ComparisonPhoronix Test SuiteBaseline+66.4%+66.4%+132.8%+132.8%+199.2%+199.2%+265.6%+265.6%265.7%117.1%117%115.1%114.4%113.7%113.6%109.1%108.6%104.5%103.8%103.8%100%100%98.2%98.1%97.1%92.4%88%87%86.8%83.1%80.2%79.9%79.8%78.9%77.6%70.8%68.2%66.9%58.6%56.1%54.8%53.1%50%48%47.9%40%39.3%37.7%37.4%35.7%32.6%30.1%26.1%25.4%23%22.4%21.4%21.1%21%20.7%20.1%20%15.6%14%12.8%9.9%8.3%3.4%2.8%Myriad-GroestlW.P.D.F.I - CPUW.P.D.F.I - CPUF.D.F - CPUF.D.F - CPUW.P.D.F - CPUW.P.D.F - CPUF.D.F.I - CPUF.D.F.I - CPUBlake-2 SM.T.E.T.D.F - CPUM.T.E.T.D.F - CPUA.G.R.R.0.F - CPUA.G.R.R.0.F - CPUV.D.F.I - CPUV.D.F.I - CPULBC, LBRY CreditsD.B.s - u8s8f32 - CPUD.B.s - u8s8f32 - CPUP.V.B.D.F - CPUP.V.B.D.F - CPUgravity_spheres_volume/dim_512/scivis/real_timeP.D.F - CPUP.D.F - CPUP.D.F - CPUP.D.F - CPUgravity_spheres_volume/dim_512/ao/real_timeA.G.R.R.0.F.I - CPUA.G.R.R.0.F.I - CPUQ.S.2.PCPU - vision_transformerR.N.N.I - u8s8f32 - CPUR.N.N.I - bf16bf16bf16 - CPUGarlicoinIP Shapes 1D - u8s8f32 - CPUV.D.F - CPUV.D.F - CPUC.B.S.A - u8s8f32 - CPUSkeincoinR.N.N.T - u8s8f32 - CPUgravity_spheres_volume/dim_512/pathtracer/real_timeR.N.N.T - bf16bf16bf16 - CPUDistinctUserIDvklBenchmark ISPCTopTweetPartialTweets1 - 4K - 1 - Path Tracer3 - 4K - 1 - Path TracerKostya1 - 4K - 32 - Path TracerPathtracer ISPC - Crown1 - 4K - 16 - Path Tracer3 - 4K - 32 - Path Tracer3 - 4K - 16 - Path TracerPathtracer ISPC - Asian DragonLargeRandSqueezeNetV1.0Eigenparticle_volume/pathtracer/real_timeSummer Nature 4KS.N.1Cpuminer-OptOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOCpuminer-OptOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOOpenVINOCpuminer-OptoneDNNoneDNNOpenVINOOpenVINOOSPRayOpenVINOOpenVINOOpenVINOOpenVINOOSPRayOpenVINOOpenVINOCpuminer-OptNCNNoneDNNoneDNNCpuminer-OptoneDNNOpenVINOOpenVINOoneDNNCpuminer-OptoneDNNOSPRayoneDNNsimdjsonOpenVKLsimdjsonsimdjsonOSPRay StudioOSPRay StudiosimdjsonOSPRay StudioEmbreeOSPRay StudioOSPRay StudioOSPRay StudioEmbreesimdjsonMobile Neural NetworkLeelaChessZeroOSPRaydav1ddav1dWithout AVX-512Default, AVX-512 Enabled

AMD Ryzen 9 7950X AVX-512cpuminer-opt: Myriad-Groestlopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUcpuminer-opt: LBC, LBRY Creditsonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUospray: gravity_spheres_volume/dim_512/scivis/real_timeopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUospray: gravity_spheres_volume/dim_512/ao/real_timeopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUcpuminer-opt: Quad SHA-256, Pyritencnn: CPU - vision_transformeronednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUcpuminer-opt: Skeincoinonednn: Recurrent Neural Network Training - u8s8f32 - CPUospray: gravity_spheres_volume/dim_512/pathtracer/real_timeonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUsimdjson: DistinctUserIDopenvkl: vklBenchmark ISPCsimdjson: TopTweetsimdjson: PartialTweetsospray-studio: 1 - 4K - 1 - Path Tracerospray-studio: 3 - 4K - 1 - Path Tracersimdjson: Kostyaospray-studio: 1 - 4K - 32 - Path Tracerembree: Pathtracer ISPC - Crownospray-studio: 1 - 4K - 16 - Path Tracerospray-studio: 3 - 4K - 32 - Path Tracerospray-studio: 3 - 4K - 16 - Path Tracerembree: Pathtracer ISPC - Asian Dragonsimdjson: LargeRandmnn: SqueezeNetV1.0lczero: Eigenospray: particle_volume/pathtracer/real_timedav1d: Summer Nature 4Kdav1d: Summer Nature 1080pcpuminer-opt: Garlicoincpuminer-opt: Blake-2 Sonednn: IP Shapes 1D - u8s8f32 - CPUWithout AVX-512Default, AVX-512 Enabled1639311.811353.846.741178.8111.73681.3713.60585.81121.0666.030.722781.70953.798.38769600.8001161.08396907.368.804.333984.201889.404.201887.134.535290.4138316.8719266762.74910.460902.10215.92502.287.449362043201566.096.922271544.397.741537.907.69450253484.9514615629.1170748441728728834430.38701.573.9971578231.378380.321412.272597.6510337000.625942599575.442938.1314.50549.945.491455.4528.44280.8659.39134.590.3545555.671890.254.231517200.4159400.5764321696.824.717.934327.571050.377.551054.928.053970.2464463.9432150339.57583.316582.90110.76742.905.321272846671137.299.509061137.9610.261999.969.64365943686.0112072735.2293620291439817361735.12171.793.5431735250.655393.401451.943977.8021134340.417196OpenBenchmarking.org

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Myriad-GroestlWithout AVX-512Default, AVX-512 Enabled13K26K39K52K65KSE +/- 105.88, N = 3SE +/- 669.95, N = 151639359957-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.02, N = 3SE +/- 0.01, N = 311.815.44-mno-avx512f - MIN: 6.9 / MAX: 19.2-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.88 / MAX: 13.321. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled6001200180024003000SE +/- 2.11, N = 3SE +/- 4.82, N = 31353.842938.13-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Face Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled48121620SE +/- 0.01, N = 3SE +/- 0.01, N = 36.7414.50-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Face Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled30060090012001500SE +/- 0.92, N = 3SE +/- 0.48, N = 31178.81549.94-mno-avx512f - MIN: 596.16 / MAX: 1250.72-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 282.71 / MAX: 577.011. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.01, N = 3SE +/- 0.00, N = 311.735.49-mno-avx512f - MIN: 6.24 / MAX: 20.45-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.89 / MAX: 13.221. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Weld Porosity Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled30060090012001500SE +/- 0.52, N = 3SE +/- 1.06, N = 3681.371455.45-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Face Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled714212835SE +/- 0.02, N = 3SE +/- 0.01, N = 313.6028.44-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Face Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled130260390520650SE +/- 0.73, N = 3SE +/- 0.17, N = 3585.81280.86-mno-avx512f - MIN: 556.1 / MAX: 596-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 263.49 / MAX: 294.781. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Machine Translation EN To DE FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled306090120150SE +/- 0.21, N = 3SE +/- 0.18, N = 3121.0659.39-mno-avx512f - MIN: 57.76 / MAX: 141.8-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 26.85 / MAX: 70.781. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Machine Translation EN To DE FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled306090120150SE +/- 0.12, N = 3SE +/- 0.42, N = 366.03134.59-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled0.15750.3150.47250.630.7875SE +/- 0.00, N = 3SE +/- 0.00, N = 30.700.35-mno-avx512f - MIN: 0.39 / MAX: 8.82-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.21 / MAX: 7.781. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled10K20K30K40K50KSE +/- 51.81, N = 3SE +/- 43.30, N = 322781.7045555.67-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled400800120016002000SE +/- 0.65, N = 3SE +/- 2.10, N = 3953.791890.25-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.01, N = 3SE +/- 0.01, N = 38.384.23-mno-avx512f - MIN: 4.65 / MAX: 17.13-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 2.63 / MAX: 12.451. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: LBC, LBRY CreditsWithout AVX-512Default, AVX-512 Enabled30K60K90K120K150KSE +/- 40.41, N = 3SE +/- 177.76, N = 376960151720-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled0.180.360.540.720.9SE +/- 0.010456, N = 3SE +/- 0.000107, N = 30.8001160.415940-mno-avx512f - MIN: 0.76-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.41. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled0.24390.48780.73170.97561.2195SE +/- 0.006665, N = 9SE +/- 0.001581, N = 91.0839600.576432-mno-avx512f - MIN: 1.03-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.561. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled400800120016002000SE +/- 1.39, N = 3SE +/- 3.05, N = 3907.361696.82-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.01, N = 3SE +/- 0.01, N = 38.804.71-mno-avx512f - MIN: 5.34 / MAX: 19.18-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 3.46 / MAX: 12.81. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/scivis/real_timeWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.00159, N = 3SE +/- 0.03212, N = 34.333987.93432

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.00, N = 3SE +/- 0.02, N = 34.207.57-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled400800120016002000SE +/- 0.47, N = 3SE +/- 2.40, N = 31889.401050.37-mno-avx512f - MIN: 1032.21 / MAX: 2215.28-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 604.91 / MAX: 1254.321. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Person Detection FP32 - Device: CPUWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.02, N = 3SE +/- 0.02, N = 34.207.55-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Person Detection FP32 - Device: CPUWithout AVX-512Default, AVX-512 Enabled400800120016002000SE +/- 5.93, N = 3SE +/- 3.05, N = 31887.131054.92-mno-avx512f - MIN: 1054.92 / MAX: 2161.5-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 641.2 / MAX: 1276.511. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/ao/real_timeWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.00574, N = 3SE +/- 0.00437, N = 34.535298.05397

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled0.09230.18460.27690.36920.4615SE +/- 0.00, N = 3SE +/- 0.00, N = 30.410.24-mno-avx512f - MIN: 0.22 / MAX: 7.87-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.15 / MAX: 7.551. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUWithout AVX-512Default, AVX-512 Enabled14K28K42K56K70KSE +/- 43.53, N = 3SE +/- 24.16, N = 338316.8764463.94-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Quad SHA-256, PyriteWithout AVX-512Default, AVX-512 Enabled70K140K210K280K350KSE +/- 177.04, N = 3SE +/- 1040.42, N = 3192667321503-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20220729Target: CPU - Model: vision_transformerWithout AVX-512Default, AVX-512 Enabled1428425670SE +/- 0.91, N = 3SE +/- 0.03, N = 362.7439.57-mno-avx512f - MIN: 61.57 / MAX: 65.21-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 39.32 / MAX: 41.991. (CXX) g++ options: -O3 -march=native -rdynamic -lgomp -lpthread

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled2004006008001000SE +/- 3.36, N = 3SE +/- 0.21, N = 3910.46583.32-mno-avx512f - MIN: 898.05-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 579.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled2004006008001000SE +/- 5.88, N = 3SE +/- 1.02, N = 3902.10582.90-mno-avx512f - MIN: 885.67-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 578.181. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled48121620SE +/- 0.16, N = 3SE +/- 0.12, N = 315.9210.76-mno-avx512f - MIN: 6.75 / MAX: 34.35-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 4.25 / MAX: 23.391. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.2.devModel: Vehicle Detection FP16 - Device: CPUWithout AVX-512Default, AVX-512 Enabled160320480640800SE +/- 5.20, N = 3SE +/- 8.04, N = 3502.28742.90-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -fPIC -O3 -march=native -fsigned-char -ffunction-sections -fdata-sections -fno-strict-overflow -fwrapv -flto -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.00637, N = 7SE +/- 0.00255, N = 77.449365.32127-mno-avx512f - MIN: 7.29-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 5.261. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: SkeincoinWithout AVX-512Default, AVX-512 Enabled60K120K180K240K300KSE +/- 1803.62, N = 3SE +/- 424.91, N = 3204320284667-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled30060090012001500SE +/- 8.37, N = 3SE +/- 1.54, N = 31566.091137.29-mno-avx512f - MIN: 1541.57-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 1130.881. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_timeWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.00119, N = 3SE +/- 0.00541, N = 36.922279.50906

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of Intel oneAPI. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled30060090012001500SE +/- 19.60, N = 3SE +/- 1.66, N = 31544.391137.96-mno-avx512f - MIN: 1494.51-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 1131.231. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: DistinctUserIDWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.07, N = 3SE +/- 0.06, N = 37.7410.26-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.0Benchmark: vklBenchmark ISPCWithout AVX-512Default, AVX-512 Enabled4080120160200SE +/- 0.00, N = 3SE +/- 0.33, N = 3153199MIN: 14 / MAX: 1843MIN: 17 / MAX: 2254

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: TopTweetWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.02, N = 3SE +/- 0.09, N = 37.909.96-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: PartialTweetsWithout AVX-512Default, AVX-512 Enabled3691215SE +/- 0.01, N = 3SE +/- 0.08, N = 37.699.64-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled10002000300040005000SE +/- 6.51, N = 3SE +/- 5.21, N = 345023659-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled11002200330044005500SE +/- 3.28, N = 3SE +/- 5.55, N = 353484368-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: KostyaWithout AVX-512Default, AVX-512 Enabled246810SE +/- 0.00, N = 3SE +/- 0.04, N = 34.956.01-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled30K60K90K120K150KSE +/- 168.25, N = 3SE +/- 140.99, N = 3146156120727-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.13Binary: Pathtracer ISPC - Model: CrownWithout AVX-512Default, AVX-512 Enabled816243240SE +/- 0.11, N = 3SE +/- 0.08, N = 329.1235.23MIN: 28.7 / MAX: 29.86MIN: 34.75 / MAX: 36.08

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled16K32K48K64K80KSE +/- 91.34, N = 3SE +/- 138.54, N = 37484462029-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled40K80K120K160K200KSE +/- 155.59, N = 3SE +/- 116.66, N = 3172872143981-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 16 - Renderer: Path TracerWithout AVX-512Default, AVX-512 Enabled20K40K60K80K100KSE +/- 7.57, N = 3SE +/- 149.41, N = 38834473617-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -ldl

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.13Binary: Pathtracer ISPC - Model: Asian DragonWithout AVX-512Default, AVX-512 Enabled816243240SE +/- 0.16, N = 3SE +/- 0.08, N = 330.3935.12MIN: 29.85 / MAX: 30.94MIN: 34.64 / MAX: 36.13

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: LargeRandomWithout AVX-512Default, AVX-512 Enabled0.40280.80561.20841.61122.014SE +/- 0.00, N = 3SE +/- 0.00, N = 31.571.79-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. This MNN test profile is building the OpenMP / CPU threaded version for processor benchmarking and not any GPU-accelerated test. MNN does allow making use of AVX-512 extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Without AVX-512Default, AVX-512 Enabled0.89931.79862.69793.59724.4965SE +/- 0.121, N = 3SE +/- 0.015, N = 63.9973.543-mno-avx512f - MIN: 3.72 / MAX: 5.69-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 3.43 / MAX: 10.231. (CXX) g++ options: -O3 -march=native -std=c++11 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: EigenWithout AVX-512Default, AVX-512 Enabled400800120016002000SE +/- 16.33, N = 3SE +/- 7.31, N = 315781735-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -flto -O3 -march=native -pthread

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.10Benchmark: particle_volume/pathtracer/real_timeWithout AVX-512Default, AVX-512 Enabled50100150200250SE +/- 0.59, N = 3SE +/- 0.91, N = 3231.38250.66

dav1d

Dav1d is an open-source, speedy AV1 video decoder. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.0Video Input: Summer Nature 4KWithout AVX-512Default, AVX-512 Enabled90180270360450SE +/- 3.22, N = 5SE +/- 1.37, N = 5380.32393.40-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -lm1. (CC) gcc options: -O3 -march=native -pthread

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.0Video Input: Summer Nature 1080pWithout AVX-512Default, AVX-512 Enabled30060090012001500SE +/- 2.53, N = 10SE +/- 1.72, N = 101412.271451.94-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -lm1. (CC) gcc options: -O3 -march=native -pthread

CPU Temperature Monitor

OpenBenchmarking.orgCelsiusCPU Temperature MonitorPhoronix Test Suite System MonitoringWithout AVX-512Default, AVX-512 Enabled20406080100Min: 36.13 / Avg: 84.12 / Max: 96.75Min: 33.63 / Avg: 81.24 / Max: 96.25

CPU Power Consumption Monitor

OpenBenchmarking.orgWattsCPU Power Consumption MonitorPhoronix Test Suite System MonitoringWithout AVX-512Default, AVX-512 Enabled4080120160200Min: 10.2 / Avg: 161.11 / Max: 235.88Min: 11.53 / Avg: 158.06 / Max: 237.76

CPU Peak Freq (Highest CPU Core Frequency) Monitor

OpenBenchmarking.orgMegahertzCPU Peak Freq (Highest CPU Core Frequency) MonitorPhoronix Test Suite System MonitoringWithout AVX-512Default, AVX-512 Enabled10002000300040005000Min: 4495 / Avg: 5334.93 / Max: 5881Min: 4421 / Avg: 5372.19 / Max: 5881

Cpuminer-Opt

MinAvgMaxWithout AVX-51244.375.979.9Default, AVX-512 Enabled40.872.976.3OpenBenchmarking.orgCelsius, Fewer Is BetterCpuminer-Opt 3.18CPU Temperature Monitor20406080100

MinAvgMaxWithout AVX-51223.1168.2190.7Default, AVX-512 Enabled22.9161.5185.7OpenBenchmarking.orgWatts, Fewer Is BetterCpuminer-Opt 3.18CPU Power Consumption Monitor50100150200250

MinAvgMaxWithout AVX-512524453395881Default, AVX-512 Enabled528353745881OpenBenchmarking.orgMegahertz, More Is BetterCpuminer-Opt 3.18CPU Peak Freq (Highest CPU Core Frequency) Monitor16003200480064008000

OpenBenchmarking.orgkH/s Per Watt, More Is BetterCpuminer-Opt 3.18Algorithm: GarlicoinWithout AVX-512Default, AVX-512 Enabled61218243015.4524.63

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: GarlicoinWithout AVX-512Default, AVX-512 Enabled9001800270036004500SE +/- 25.96, N = 3SE +/- 75.31, N = 122597.653977.80-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

MinAvgMaxWithout AVX-51248.669.285.9Default, AVX-512 Enabled47.166.479.6OpenBenchmarking.orgCelsius, Fewer Is BetterCpuminer-Opt 3.18CPU Temperature Monitor20406080100

MinAvgMaxWithout AVX-51221.0105.5175.6Default, AVX-512 Enabled19.2107.8200.8OpenBenchmarking.orgWatts, Fewer Is BetterCpuminer-Opt 3.18CPU Power Consumption Monitor50100150200250

MinAvgMaxWithout AVX-512520455215881Default, AVX-512 Enabled526055425881OpenBenchmarking.orgMegahertz, More Is BetterCpuminer-Opt 3.18CPU Peak Freq (Highest CPU Core Frequency) Monitor16003200480064008000

OpenBenchmarking.orgkH/s Per Watt, More Is BetterCpuminer-Opt 3.18Algorithm: Blake-2 SWithout AVX-512Default, AVX-512 Enabled4K8K12K16K20K9800.3719614.14

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.18Algorithm: Blake-2 SWithout AVX-512Default, AVX-512 Enabled500K1000K1500K2000K2500KSE +/- 4192.40, N = 3SE +/- 38034.65, N = 1210337002113434-mno-avx512f-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi1. (CXX) g++ options: -O3 -march=native -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

MinAvgMaxWithout AVX-51248.180.293.6Default, AVX-512 Enabled48.470.887.5OpenBenchmarking.orgCelsius, Fewer Is BetteroneDNN 2.6CPU Temperature Monitor20406080100

MinAvgMaxWithout AVX-51223.9140.4221.2Default, AVX-512 Enabled20.1124.9214.3OpenBenchmarking.orgWatts, Fewer Is BetteroneDNN 2.6CPU Power Consumption Monitor60120180240300

MinAvgMaxWithout AVX-512512553675881Default, AVX-512 Enabled512754195881OpenBenchmarking.orgMegahertz, More Is BetteroneDNN 2.6CPU Peak Freq (Highest CPU Core Frequency) Monitor16003200480064008000

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.6Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUWithout AVX-512Default, AVX-512 Enabled0.14080.28160.42240.56320.704SE +/- 0.006181, N = 5SE +/- 0.007969, N = 150.6259420.417196-mno-avx512f - MIN: 0.58-mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi - MIN: 0.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread

75 Results Shown

Cpuminer-Opt
OpenVINO:
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    FPS
    ms
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16-INT8 - CPU:
    FPS
    ms
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    FPS
    ms
Cpuminer-Opt
oneDNN:
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
OpenVINO:
  Person Vehicle Bike Detection FP16 - CPU:
    FPS
    ms
OSPRay
OpenVINO:
  Person Detection FP16 - CPU:
    FPS
    ms
  Person Detection FP32 - CPU:
    FPS
    ms
OSPRay
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
Cpuminer-Opt
NCNN
oneDNN:
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
OpenVINO:
  Vehicle Detection FP16 - CPU:
    ms
    FPS
oneDNN
Cpuminer-Opt
oneDNN
OSPRay
oneDNN
simdjson
OpenVKL
simdjson:
  TopTweet
  PartialTweets
OSPRay Studio:
  1 - 4K - 1 - Path Tracer
  3 - 4K - 1 - Path Tracer
simdjson
OSPRay Studio
Embree
OSPRay Studio:
  1 - 4K - 16 - Path Tracer
  3 - 4K - 32 - Path Tracer
  3 - 4K - 16 - Path Tracer
Embree
simdjson
Mobile Neural Network
LeelaChessZero
OSPRay
dav1d:
  Summer Nature 4K
  Summer Nature 1080p
CPU Temperature Monitor:
  Phoronix Test Suite System Monitoring:
    Celsius
    Watts
    Megahertz
  CPU Temp Monitor:
    Celsius
  CPU Power Consumption Monitor:
    Watts
  CPU Peak Freq (Highest CPU Core Frequency) Monitor:
    Megahertz
  Garlicoin:
    kH/s Per Watt
Cpuminer-Opt
Cpuminer-Opt:
  CPU Temp Monitor
  CPU Power Consumption Monitor
  CPU Peak Freq (Highest CPU Core Frequency) Monitor
  Blake-2 S
Cpuminer-Opt
oneDNN:
  CPU Temp Monitor
  CPU Power Consumption Monitor
  CPU Peak Freq (Highest CPU Core Frequency) Monitor
oneDNN