eps

Tests for a future article. 2 x AMD EPYC 9684X 96-Core testing with a AMD Titanite_4G (RTI1007B BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2312240-NE-EPS17737430
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
December 24 2023
  1 Day, 26 Minutes
b
December 25 2023
  7 Hours, 39 Minutes
Invert Behavior (Only Show Selected Data)
  16 Hours, 3 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


epsOpenBenchmarking.orgPhoronix Test Suite2 x AMD EPYC 9684X 96-Core @ 2.55GHz (192 Cores / 384 Threads)AMD Titanite_4G (RTI1007B BIOS)AMD Device 14a41520GB3201GB Micron_7450_MTFDKCB3T2TFSASPEEDBroadcom NetXtreme BCM5720 PCIeUbuntu 23.106.5.0-13-generic (x86_64)GCC 13.2.0ext4800x600ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelCompilerFile-SystemScreen ResolutionEps PerformanceSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa10113e - OpenJDK Runtime Environment (build 11.0.21+9-post-Ubuntu-0ubuntu123.10)- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+7.7%+7.7%+15.4%+15.4%+23.1%+23.1%+30.8%+30.8%7.7%5.3%4.3%4.3%2.7%2.1%4.6%11.9%30.8%3.4%11.7%2.7%9.7%4.1%9.6%10.5%6.6%2.7%2.5%7.4%6.7%2.4%2%9.6%3.1%2.3%13.1%CPU - 256 - ResNet-152CPU - 1 - Efficientnet_v2_lPreset 13 - Bosphorus 4KPreset 12 - Bosphorus 4KQ.1.C.E.53.7%CPU - 256 - ResNet-503.3%CPU - 1 - ResNet-152BLAS1 - Q012.9%1 - Q041 - Q051 - Q061 - Q071 - Q093.3%1 - Q111 - Q124.2%1 - Q139.6%1 - Q147.1%1 - Q153.4%1 - Q169.9%1 - Q171 - Q181 - Q198.5%1 - Q225.9%10 - Q0110 - Q032.3%10 - Q0410 - Q0514.7%10 - Q0610 - Q0810 - Q092.8%10 - Q1010 - Q113.4%10 - Q137.6%10 - Q1410 - Q1510 - Q1810 - Q1950 - Q017.2%50 - Q0313.4%50 - Q043.9%50 - Q054.6%50 - Q074%50 - Q1150 - Q1250 - Q132.2%50 - Q1550 - Q165.3%50 - Q1850 - Q1915.6%50 - Q21PyTorchPyTorchSVT-AV1SVT-AV1WebP2 Image EncodePyTorchPyTorchLeelaChessZeroApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-Hab

epspytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lopenssl: SHA256openssl: SHA512svt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pxmrig: KawPow - 1Mxmrig: Monero - 1Mxmrig: Wownero - 1Mxmrig: GhostRider - 1Mxmrig: CryptoNight-Heavy - 1Mxmrig: CryptoNight-Femto UPX2 - 1Mdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamjava-scimark2: Compositejava-scimark2: Monte Carlojava-scimark2: Fast Fourier Transformjava-scimark2: Sparse Matrix Multiplyjava-scimark2: Dense LU Matrix Factorizationjava-scimark2: Jacobi Successive Over-Relaxationwebp2: Defaultwebp2: Quality 75, Compression Effort 7webp2: Quality 95, Compression Effort 7webp2: Quality 100, Compression Effort 5webp2: Quality 100, Lossless Compressionlczero: BLASlczero: Eigenopenssl: RSA4096openssl: RSA4096deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamspark-tpch: 1 - Geometric Mean Of All Queriesspark-tpch: 1 - Q01spark-tpch: 1 - Q02spark-tpch: 1 - Q03spark-tpch: 1 - Q04spark-tpch: 1 - Q05spark-tpch: 1 - Q06spark-tpch: 1 - Q07spark-tpch: 1 - Q08spark-tpch: 1 - Q09spark-tpch: 1 - Q10spark-tpch: 1 - Q11spark-tpch: 1 - Q12spark-tpch: 1 - Q13spark-tpch: 1 - Q14spark-tpch: 1 - Q15spark-tpch: 1 - Q16spark-tpch: 1 - Q17spark-tpch: 1 - Q18spark-tpch: 1 - Q19spark-tpch: 1 - Q20spark-tpch: 1 - Q21spark-tpch: 1 - Q22spark-tpch: 10 - Geometric Mean Of All Queriesspark-tpch: 10 - Q01spark-tpch: 10 - Q02spark-tpch: 10 - Q03spark-tpch: 10 - Q04spark-tpch: 10 - Q05spark-tpch: 10 - Q06spark-tpch: 10 - Q07spark-tpch: 10 - Q08spark-tpch: 10 - Q09spark-tpch: 10 - Q10spark-tpch: 10 - Q11spark-tpch: 10 - Q12spark-tpch: 10 - Q13spark-tpch: 10 - Q14spark-tpch: 10 - Q15spark-tpch: 10 - Q16spark-tpch: 10 - Q17spark-tpch: 10 - Q18spark-tpch: 10 - Q19spark-tpch: 10 - Q20spark-tpch: 10 - Q21spark-tpch: 10 - Q22spark-tpch: 50 - Geometric Mean Of All Queriesspark-tpch: 50 - Q01spark-tpch: 50 - Q02spark-tpch: 50 - Q03spark-tpch: 50 - Q04spark-tpch: 50 - Q05spark-tpch: 50 - Q06spark-tpch: 50 - Q07spark-tpch: 50 - Q08spark-tpch: 50 - Q09spark-tpch: 50 - Q10spark-tpch: 50 - Q11spark-tpch: 50 - Q12spark-tpch: 50 - Q13spark-tpch: 50 - Q14spark-tpch: 50 - Q15spark-tpch: 50 - Q16spark-tpch: 50 - Q17spark-tpch: 50 - Q18spark-tpch: 50 - Q19spark-tpch: 50 - Q20spark-tpch: 50 - Q21spark-tpch: 50 - Q22ab23.5710.1621.1621.008.9321.298.908.966.402.322.322.32281869895760916309254738.24886.434178.910176.67021.424165.104571.875635.810123558.6123352.8131141.931859.7123041.6123199.0132.658048.44765540.6268190.79991758.5931209.799817108.4634804.1784784.5178211.7448156.415932.02291761.4041208.1200796.0713212.09551136.7105224.5798248.577065.20702608.009068.2655132.048548.49173984.621631.42420.742809.0113358.531703.429.480.830.456.510.1185370498622.03244390.3715.036220.634517.30235.237754.50644.76375.59551.2413122.03124.7188607.566431.215454.40974.8022120.20654.712684.25194.4503383.200415.318336.750814.6422719.281420.61572.449649164.320060812.061790713.864421843.925257454.131221610.468229154.010448062.655846445.709694073.813596651.273381352.175426481.588159362.064853312.501859661.381472592.959939245.628538450.790923953.057396179.645312311.0076904710.721502087.588891517.4310428313.9730876312.3457120316.443656292.0510474514.6520093315.5182476121.9067020415.174880988.002923499.944004387.377283737.076223695.841380766.8713129412.7704455018.469711946.2067783711.4356082332.907150276.0541189519.5874580712.0079561914.2548720026.1878871920.9959831229.836278915.9030920724.8571116126.7353528336.6645851124.3600374813.5802825319.4053777112.7590141312.704550119.7773386614.2157039724.3092791234.5130564310.4528725920.7987613787.8952891010.6932563823.1210.4321.5721.098.9720.608.989.656.742.342.322.28282211175400918359614708.20886.841186.609184.34721.313162.561569.955639.088123411.1122971131613.631728.9123777.7122070.3132.271948.32645540.517191.09711756.5569206.96917047.639804.7528786.8905211.7729156.428331.97951759.0746209.1955797.4124212.13051136.6439225.4047249.498365.00792596.096168.2636132.421948.3323996.761632.45421.912792.0913434.091703.259.630.820.456.280.1187171598528.83243345.2717.593620.68617.30195.229654.55464.8295.61591.2404121.60674.718607.573531.257554.48594.7775120.03734.711784.24914.4341382.556115.365336.914614.6426717.979120.68372.495177474.446579462.082242013.866108183.754272463.692176340.358015573.877902752.609078175.897758483.812455421.139986872.266416071.740741612.211469652.587141751.517799142.883481985.131711480.857975963.050016889.559095381.0667921310.657939427.288267147.3924598714.2898464211.2624216118.861291891.855959314.8960590414.5576934822.5255279514.777194988.2781429310.038290027.940837866.906023035.438705926.9527068113.0137414917.313701636.060416711.5396614132.701549536.0443091419.5647565812.8683500314.5304679929.6859054621.816757231.200597765.8838248325.8605518326.6290950836.6652679424.6858558713.3120002717.7000179313.0449647912.567670829.4828777314.9753580124.5578899433.7419815112.0859279621.0538444577.7067565910.87410069OpenBenchmarking.org

OpenSSL

OpenSSL is an open-source toolkit that implements SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols. The system/openssl test profiles relies on benchmarking the system/OS-supplied openssl binary rather than the pts/openssl test profile that uses the locally-built OpenSSL for benchmarking. Learn more via the OpenBenchmarking.org test page.

Algorithm: ChaCha20

a: The test run did not produce a result.

b: The test run did not produce a result.

Algorithm: AES-128-GCM

a: The test run did not produce a result. E: 4097A6F7B77F0000:error:1C800066:Provider routines:ossl_gcm_stream_update:cipher operation failed:../providers/implementations/ciphers/ciphercommon_gcm.c:320:

b: The test run did not produce a result. E: 40B7EFA3BE7F0000:error:1C800066:Provider routines:ossl_gcm_stream_update:cipher operation failed:../providers/implementations/ciphers/ciphercommon_gcm.c:320:

Algorithm: AES-256-GCM

a: The test run did not produce a result. E: 40270E64087F0000:error:1C800066:Provider routines:ossl_gcm_stream_update:cipher operation failed:../providers/implementations/ciphers/ciphercommon_gcm.c:320:

b: The test run did not produce a result. E: 408712FE017F0000:error:1C800066:Provider routines:ossl_gcm_stream_update:cipher operation failed:../providers/implementations/ciphers/ciphercommon_gcm.c:320:

Algorithm: ChaCha20-Poly1305

a: The test run did not produce a result.

b: The test run did not produce a result.

PyTorch

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ba612182430SE +/- 0.19, N = 1523.1223.57MIN: 12.17 / MAX: 24.33MIN: 11.38 / MAX: 25.62

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ba3691215SE +/- 0.08, N = 310.4310.16MIN: 4.8 / MAX: 11.36MIN: 4.56 / MAX: 10.94

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ba510152025SE +/- 0.25, N = 321.5721.16MIN: 14.06 / MAX: 22.29MIN: 12.26 / MAX: 22.24

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ba510152025SE +/- 0.20, N = 321.0921.00MIN: 13.93 / MAX: 21.71MIN: 11.39 / MAX: 21.87

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ba3691215SE +/- 0.10, N = 38.978.93MIN: 4.96 / MAX: 9.11MIN: 4.75 / MAX: 9.39

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50ba510152025SE +/- 0.31, N = 320.6021.29MIN: 13.89 / MAX: 21.35MIN: 13.22 / MAX: 22.39

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ba3691215SE +/- 0.10, N = 38.988.90MIN: 5.1 / MAX: 9.29MIN: 4.8 / MAX: 9.23

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152ba3691215SE +/- 0.05, N = 39.658.96MIN: 4.98 / MAX: 9.85MIN: 4.84 / MAX: 9.24

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lba246810SE +/- 0.05, N = 36.746.40MIN: 3.48 / MAX: 6.89MIN: 2.93 / MAX: 6.73

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lba0.52651.0531.57952.1062.6325SE +/- 0.01, N = 32.342.32MIN: 1.78 / MAX: 2.78MIN: 1.77 / MAX: 2.81

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lba0.5221.0441.5662.0882.61SE +/- 0.01, N = 32.322.32MIN: 1.93 / MAX: 2.71MIN: 1.86 / MAX: 2.8

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lba0.5221.0441.5662.0882.61SE +/- 0.00, N = 32.282.32MIN: 1.71 / MAX: 2.84MIN: 1.83 / MAX: 2.8

OpenSSL

OpenSSL is an open-source toolkit that implements SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols. The system/openssl test profiles relies on benchmarking the system/OS-supplied openssl binary rather than the pts/openssl test profile that uses the locally-built OpenSSL for benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: SHA256ba60000M120000M180000M240000M300000MSE +/- 548972949.20, N = 32822111754002818698957601. OpenSSL 3.0.10 1 Aug 2023 (Library: OpenSSL 3.0.10 1 Aug 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: SHA512ba20000M40000M60000M80000M100000MSE +/- 191332047.54, N = 391835961470916309254731. OpenSSL 3.0.10 1 Aug 2023 (Library: OpenSSL 3.0.10 1 Aug 2023)

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kba246810SE +/- 0.041, N = 38.2088.2481. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kba20406080100SE +/- 0.17, N = 386.8486.431. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kba4080120160200SE +/- 1.43, N = 3186.61178.911. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kba4080120160200SE +/- 1.61, N = 15184.35176.671. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pba510152025SE +/- 0.13, N = 321.3121.421. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pba4080120160200SE +/- 1.87, N = 3162.56165.101. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pba120240360480600SE +/- 1.39, N = 3569.96571.881. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080pba140280420560700SE +/- 8.75, N = 3639.09635.811. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Xmrig

Xmrig is an open-source cross-platform CPU/GPU miner for RandomX, KawPow, CryptoNight and AstroBWT. This test profile is setup to measure the Xmrig CPU mining performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: KawPow - Hash Count: 1Mba30K60K90K120K150KSE +/- 87.00, N = 3123411.1123558.61. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Monero - Hash Count: 1Mba30K60K90K120K150KSE +/- 404.54, N = 3122971.0123352.81. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Wownero - Hash Count: 1Mba30K60K90K120K150KSE +/- 621.69, N = 3131613.6131141.91. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: GhostRider - Hash Count: 1Mba7K14K21K28K35KSE +/- 24.02, N = 331728.931859.71. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Heavy - Hash Count: 1Mba30K60K90K120K150KSE +/- 33.09, N = 3123777.7123041.61. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Femto UPX2 - Hash Count: 1Mba30K60K90K120K150KSE +/- 220.87, N = 3122070.3123199.01. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba306090120150SE +/- 0.66, N = 3132.27132.66

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamba1122334455SE +/- 0.02, N = 348.3348.45

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba12002400360048006000SE +/- 5.02, N = 35540.525540.63

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamba4080120160200SE +/- 0.06, N = 3191.10190.80

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamba400800120016002000SE +/- 1.91, N = 31756.561758.59

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamba50100150200250SE +/- 0.52, N = 3206.97209.80

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba4K8K12K16K20KSE +/- 16.76, N = 317047.6417108.46

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamba2004006008001000SE +/- 3.00, N = 3804.75804.18

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamba2004006008001000SE +/- 1.42, N = 3786.89784.52

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamba50100150200250SE +/- 0.50, N = 3211.77211.74

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamba306090120150SE +/- 0.02, N = 3156.43156.42

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamba714212835SE +/- 0.03, N = 331.9832.02

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba400800120016002000SE +/- 2.24, N = 31759.071761.40

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamba50100150200250SE +/- 0.44, N = 3209.20208.12

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamba2004006008001000SE +/- 1.54, N = 3797.41796.07

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamba50100150200250SE +/- 0.35, N = 3212.13212.10

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba2004006008001000SE +/- 2.45, N = 31136.641136.71

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamba50100150200250SE +/- 0.01, N = 3225.40224.58

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamba50100150200250SE +/- 0.41, N = 3249.50248.58

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamba1530456075SE +/- 0.04, N = 365.0165.21

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba6001200180024003000SE +/- 6.37, N = 32596.102608.01

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamba1530456075SE +/- 0.11, N = 368.2668.27

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba306090120150SE +/- 0.03, N = 3132.42132.05

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamba1122334455SE +/- 0.05, N = 348.3348.49

Java SciMark

This test runs the Java version of SciMark 2, which is a benchmark for scientific and numerical computing developed by programmers at the National Institute of Standards and Technology. This benchmark is made up of Fast Foruier Transform, Jacobi Successive Over-relaxation, Monte Carlo, Sparse Matrix Multiply, and dense LU matrix factorization benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Compositeba9001800270036004500SE +/- 6.24, N = 33996.763984.62

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Monte Carloba400800120016002000SE +/- 0.75, N = 31632.451631.42

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Fast Fourier Transformba90180270360450SE +/- 0.36, N = 3421.91420.74

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Sparse Matrix Multiplyba6001200180024003000SE +/- 3.16, N = 32792.092809.01

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Dense LU Matrix Factorizationba3K6K9K12K15KSE +/- 31.70, N = 313434.0913358.53

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Jacobi Successive Over-Relaxationba400800120016002000SE +/- 0.16, N = 31703.251703.42

WebP2 Image Encode

This is a test of Google's libwebp2 library with the WebP2 image encode utility and using a sample 6000x4000 pixel JPEG image as the input, similar to the WebP/libwebp test profile. WebP2 is currently experimental and under heavy development as ultimately the successor to WebP. WebP2 supports 10-bit HDR, more efficienct lossy compression, improved lossless compression, animation support, and full multi-threading support compared to WebP. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Defaultba3691215SE +/- 0.08, N = 39.639.481. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 75, Compression Effort 7ba0.18680.37360.56040.74720.934SE +/- 0.00, N = 30.820.831. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 95, Compression Effort 7ba0.10130.20260.30390.40520.5065SE +/- 0.00, N = 30.450.451. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 100, Compression Effort 5ba246810SE +/- 0.04, N = 36.286.511. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 100, Lossless Compressionba0.02480.04960.07440.09920.124SE +/- 0.00, N = 30.110.111. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLASba2004006008001000SE +/- 18.54, N = 98718531. (CXX) g++ options: -flto -pthread

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigenba150300450600750SE +/- 17.59, N = 87157041. (CXX) g++ options: -flto -pthread

OpenSSL

OpenSSL is an open-source toolkit that implements SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols. The system/openssl test profiles relies on benchmarking the system/OS-supplied openssl binary rather than the pts/openssl test profile that uses the locally-built OpenSSL for benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgsign/s, More Is BetterOpenSSLAlgorithm: RSA4096ba20K40K60K80K100KSE +/- 53.45, N = 398528.898622.01. OpenSSL 3.0.10 1 Aug 2023 (Library: OpenSSL 3.0.10 1 Aug 2023)

OpenBenchmarking.orgverify/s, More Is BetterOpenSSLAlgorithm: RSA4096ba700K1400K2100K2800K3500KSE +/- 1292.47, N = 33243345.23244390.31. OpenSSL 3.0.10 1 Aug 2023 (Library: OpenSSL 3.0.10 1 Aug 2023)

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba150300450600750SE +/- 4.21, N = 3717.59715.04

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamba510152025SE +/- 0.01, N = 320.6920.63

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba48121620SE +/- 0.01, N = 317.3017.30

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamba1.17852.3573.53554.7145.8925SE +/- 0.0015, N = 35.22965.2377

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamba1224364860SE +/- 0.06, N = 354.5554.51

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamba1.08652.1733.25954.3465.4325SE +/- 0.0118, N = 34.82904.7637

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba1.26362.52723.79085.05446.318SE +/- 0.0055, N = 35.61595.5955

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamba0.27930.55860.83791.11721.3965SE +/- 0.0046, N = 31.24041.2413

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamba306090120150SE +/- 0.25, N = 3121.61122.03

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamba1.06172.12343.18514.24685.3085SE +/- 0.0110, N = 34.71804.7188

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamba130260390520650SE +/- 0.37, N = 3607.57607.57

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamba714212835SE +/- 0.03, N = 331.2631.22

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba1224364860SE +/- 0.07, N = 354.4954.41

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamba1.08052.1613.24154.3225.4025SE +/- 0.0103, N = 34.77754.8022

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamba306090120150SE +/- 0.24, N = 3120.04120.21

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamba1.06032.12063.18094.24125.3015SE +/- 0.0079, N = 34.71174.7126

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba20406080100SE +/- 0.19, N = 384.2584.25

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamba1.00132.00263.00394.00525.0065SE +/- 0.0001, N = 34.43414.4503

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamba80160240320400SE +/- 0.61, N = 3382.56383.20

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamba48121620SE +/- 0.01, N = 315.3715.32

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba816243240SE +/- 0.09, N = 336.9136.75

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamba48121620SE +/- 0.02, N = 314.6414.64

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba160320480640800SE +/- 1.53, N = 3717.98719.28

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamba510152025SE +/- 0.02, N = 320.6820.62

Apache Spark TPC-H

This is a benchmark of Apache Spark using TPC-H data-set. Apache Spark is an open-source unified analytics engine for large-scale data processing and dealing with big data. This test profile benchmarks the Apache Spark in a single-system configuration using spark-submit. The test makes use of https://github.com/ssavvides/tpch-spark/ for facilitating the TPC-H benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterApache Spark TPC-H 3.5Scale Factor: 1 - Geometric Mean Of All Queriesba0.56141.12281.68422.24562.807SE +/- 0.02040294, N = 32.495177472.44964916MIN: 0.86 / MAX: 9.56MIN: 0.73 / MAX: 10.03

OpenBenchmarking.orgSeconds, Fewer Is BetterApache Spark TPC-H 3.5Scale Factor: 10 - Geometric Mean Of All Queriesba3691215SE +/- 0.02, N = 310.6610.72MIN: 5.44 / MAX: 32.7MIN: 5.7 / MAX: 33.03

OpenBenchmarking.orgSeconds, Fewer Is BetterApache Spark TPC-H 3.5Scale Factor: 50 - Geometric Mean Of All Queriesba510152025SE +/- 0.05, N = 319.5619.59MIN: 9.48 / MAX: 77.71MIN: 9.71 / MAX: 103.64

94 Results Shown

PyTorch:
  CPU - 1 - ResNet-50
  CPU - 1 - ResNet-152
  CPU - 16 - ResNet-50
  CPU - 32 - ResNet-50
  CPU - 16 - ResNet-152
  CPU - 256 - ResNet-50
  CPU - 32 - ResNet-152
  CPU - 256 - ResNet-152
  CPU - 1 - Efficientnet_v2_l
  CPU - 16 - Efficientnet_v2_l
  CPU - 32 - Efficientnet_v2_l
  CPU - 256 - Efficientnet_v2_l
OpenSSL:
  SHA256
  SHA512
SVT-AV1:
  Preset 4 - Bosphorus 4K
  Preset 8 - Bosphorus 4K
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
Xmrig:
  KawPow - 1M
  Monero - 1M
  Wownero - 1M
  GhostRider - 1M
  CryptoNight-Heavy - 1M
  CryptoNight-Femto UPX2 - 1M
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
Java SciMark:
  Composite
  Monte Carlo
  Fast Fourier Transform
  Sparse Matrix Multiply
  Dense LU Matrix Factorization
  Jacobi Successive Over-Relaxation
WebP2 Image Encode:
  Default
  Quality 75, Compression Effort 7
  Quality 95, Compression Effort 7
  Quality 100, Compression Effort 5
  Quality 100, Lossless Compression
LeelaChessZero:
  BLAS
  Eigen
OpenSSL:
  RSA4096:
    sign/s
    verify/s
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
Apache Spark TPC-H:
  1 - Geometric Mean Of All Queries
  10 - Geometric Mean Of All Queries
  50 - Geometric Mean Of All Queries