dfgg

Intel Core i7-1065G7 testing with a Dell 06CDVY (1.0.9 BIOS) and Intel Iris Plus ICL GT2 16GB on Ubuntu 23.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2312179-NE-DFGG1028382
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

CPU Massive 3 Tests
Creator Workloads 2 Tests
HPC - High Performance Computing 2 Tests
Java Tests 3 Tests
Machine Learning 2 Tests
Python Tests 3 Tests
Server 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
December 16 2023
  14 Hours, 49 Minutes
b
December 17 2023
  14 Hours, 49 Minutes
Invert Hiding All Results Option
  14 Hours, 49 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


dfggOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-1065G7 @ 3.90GHz (4 Cores / 8 Threads)Dell 06CDVY (1.0.9 BIOS)Intel Ice Lake-LP DRAM16GBToshiba KBG40ZPZ512G NVMe 512GBIntel Iris Plus ICL GT2 16GB (1100MHz)Realtek ALC289Intel Ice Lake-LP PCH CNVi WiFiUbuntu 23.046.2.0-36-generic (x86_64)GNOME Shell 44.3X Server + Wayland4.6 Mesa 23.0.4-0ubuntu1~23.04.1OpenCL 3.0GCC 12.3.0ext41920x1200ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLOpenCLCompilerFile-SystemScreen ResolutionDfgg BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xc2 - Thermald 2.5.2 - OpenJDK Runtime Environment (build 11.0.20.1+1-post-Ubuntu-0ubuntu123.04) - Python 3.11.4- gather_data_sampling: Mitigation of Microcode + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+10.2%+10.2%+20.4%+20.4%+30.6%+30.6%40.6%20%3.6%2.9%13.8%8.2%10.9%3.9%7.8%13.1%2.9%9.9%5%3.5%2.4%3.5%7%2.7%2.1%5.2%3.6%BLASEigenPreset 12 - Bosphorus 4K10.9%Writes9.3%R.5.S.I - S.S.S7.9%R.5.S.I - S.S.S7.9%ChaCha20-Poly13057.2%N.D.C.o.b.u.o.I - A.M.S6.8%N.D.C.o.b.u.o.I - A.M.S6.7%AES-256-GCM6.5%Preset 13 - Bosphorus 4K6.2%Default6.1%RSA40965.7%SHA5125.3%RSA40964.1%Preset 8 - Bosphorus 4K4.1%Preset 4 - Bosphorus 4K4%ChaCha203.7%Preset 8 - Bosphorus 1080pC.D.Y.C - A.M.S3.3%C.D.Y.C - A.M.S3.3%Wownero - 1M3.2%KawPow - 1MC.C.R.5.I - A.M.S2.8%R.5.B - A.M.S2.8%C.C.R.5.I - A.M.S2.8%R.5.B - A.M.S2.8%R.5.B - S.S.S2.6%R.5.B - S.S.S2.6%N.D.C.o.b.u.o.I - S.S.S2.5%N.D.C.o.b.u.o.I - S.S.S2.5%R.5.S.I - A.M.S2.4%R.5.S.I - A.M.S2.4%Preset 4 - Bosphorus 1080p2.2%C.S.9.P.Y.P - S.S.S2.2%C.S.9.P.Y.P - S.S.S2.2%B.L.N.Q.A - A.M.S2%B.L.N.Q.A - A.M.S2%1 - Q021 - Q0310.7%1 - Q045.5%1 - Q0511.4%1 - Q061 - Q071 - Q089.4%1 - Q0910.4%1 - Q108.5%1 - Q114.3%1 - Q121 - Q131 - Q147.6%1 - Q1618.7%1 - Q172.1%1 - Q191 - Q205.7%1 - Q211 - Q2210 - Q017.4%10 - Q0210 - Q056.4%10 - Q0810 - Q113.4%10 - Q1210 - Q133.8%10 - Q1510 - Q1710 - Q1810 - Q1910 - Q2010 - Q2110 - Q222.9%LeelaChessZeroLeelaChessZeroSVT-AV1ScyllaDBNeural Magic DeepSparseNeural Magic DeepSparseOpenSSLNeural Magic DeepSparseNeural Magic DeepSparseOpenSSLSVT-AV1WebP2 Image EncodeOpenSSLOpenSSLOpenSSLSVT-AV1SVT-AV1OpenSSLSVT-AV1Neural Magic DeepSparseNeural Magic DeepSparseXmrigXmrigNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseSVT-AV1Neural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-HApache Spark TPC-Hab

dfgglczero: BLASlczero: Eigenxmrig: KawPow - 1Mxmrig: Monero - 1Mxmrig: Wownero - 1Mxmrig: GhostRider - 1Mxmrig: CryptoNight-Heavy - 1Mxmrig: CryptoNight-Femto UPX2 - 1Mjava-scimark2: Compositejava-scimark2: Monte Carlojava-scimark2: Fast Fourier Transformjava-scimark2: Sparse Matrix Multiplyjava-scimark2: Dense LU Matrix Factorizationjava-scimark2: Jacobi Successive Over-Relaxationwebp2: Defaultwebp2: Quality 75, Compression Effort 7webp2: Quality 95, Compression Effort 7webp2: Quality 100, Compression Effort 5svt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080popenssl: SHA256openssl: SHA512openssl: RSA4096openssl: RSA4096openssl: ChaCha20openssl: AES-128-GCMopenssl: AES-256-GCMopenssl: ChaCha20-Poly1305spark-tpch: 1 - Geometric Mean Of All Queriesspark-tpch: 1 - Q01spark-tpch: 1 - Q02spark-tpch: 1 - Q03spark-tpch: 1 - Q04spark-tpch: 1 - Q05spark-tpch: 1 - Q06spark-tpch: 1 - Q07spark-tpch: 1 - Q08spark-tpch: 1 - Q09spark-tpch: 1 - Q10spark-tpch: 1 - Q11spark-tpch: 1 - Q12spark-tpch: 1 - Q13spark-tpch: 1 - Q14spark-tpch: 1 - Q15spark-tpch: 1 - Q16spark-tpch: 1 - Q17spark-tpch: 1 - Q18spark-tpch: 1 - Q19spark-tpch: 1 - Q20spark-tpch: 1 - Q21spark-tpch: 1 - Q22spark-tpch: 10 - Geometric Mean Of All Queriesspark-tpch: 10 - Q01spark-tpch: 10 - Q02spark-tpch: 10 - Q03spark-tpch: 10 - Q04spark-tpch: 10 - Q05spark-tpch: 10 - Q06spark-tpch: 10 - Q07spark-tpch: 10 - Q08spark-tpch: 10 - Q09spark-tpch: 10 - Q10spark-tpch: 10 - Q11spark-tpch: 10 - Q12spark-tpch: 10 - Q13spark-tpch: 10 - Q14spark-tpch: 10 - Q15spark-tpch: 10 - Q16spark-tpch: 10 - Q17spark-tpch: 10 - Q18spark-tpch: 10 - Q19spark-tpch: 10 - Q20spark-tpch: 10 - Q21spark-tpch: 10 - Q22deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamscylladb: Writesab32201296.41308.11573.6187.41298.81302.32605.95935.32518.571999.028173.691403.142.600.030.010.950.8927.04431.31333.8623.68426.035192.189254.955213938423085603779076945019.3153756472701520289082013364107950105360567004.73252577.151234633.88890916.392387876.716489326.38540223.511440526.482258324.977445137.872983935.496996881.937303665.025319583.230685473.693408013.91055251.723811758.4044141810.343193054.042024144.8652949320.61895182.2499628141.8201584941.6055679312.7919893355.937057548.4794311562.5023002636.5631408754.8296089262.1865158173.7576141451.2323379510.5974807748.5409698520.439550438.5986900337.0256462111.40860558100.78012848106.4414520339.1945571949.48738861196.2626190212.723425872.1073946.78942.1503465.026784.708123.572876.321913.088834.001558.769533.339429.9776233.2688.5472209.81374.75314.0194142.61712.452180.2872.7047737.65422.6753373.768534.279258.303633.293430.018914.1581141.226512.8577.806119.3773103.169718.22154.86684.2078475.15754.355229.591837.33953.516233.757429.60282.153926.22292.1502465.05232785145241333.91290.31524.2185.21282.11281.72611.98936.54516.531994.168211.451401.222.450.030.010.950.8586.76528.22631.8733.60526.967192.665256.0842104039050813051380727.24322914830093930150817390601254837835098303068804.80874367.087840563.417973287.074677947.0857837.113306523.24464255.844977385.443890098.69179635.961719042.020401724.836236952.99688223.972354413.840383052.046055328.5774555210.197968483.573512555.1429262220.035987852.0471069841.3449588444.6807212812.1880130855.5770492648.5239868266.5027389537.0597267255.6137847960.0741767973.3200683651.3171424910.9613199247.3945617721.2104206138.9642410335.773826611.6129798994.20128632103.6828384438.374557547.05195236189.404434213.094064711.97361010.44022.0978476.672683.38223.943975.0613.30933.083560.408632.506330.7461227.72598.7547194.44865.128813.5693147.351912.417680.50972.6521752.23632.6391378.90633.34259.927732.753730.514313.9054143.488512.701578.715619.3021103.498118.03555.4334.1657480.04654.2633234.536236.981954.035233.437129.88712.142931.33662.1345468.481625475OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLASab102030405032451. (CXX) g++ options: -flto -pthread

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigenab61218243020241. (CXX) g++ options: -flto -pthread

Xmrig

Xmrig is an open-source cross-platform CPU/GPU miner for RandomX, KawPow, CryptoNight and AstroBWT. This test profile is setup to measure the Xmrig CPU mining performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: KawPow - Hash Count: 1Mab300600900120015001296.41333.91. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Monero - Hash Count: 1Mba300600900120015001290.31308.11. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Wownero - Hash Count: 1Mba300600900120015001524.21573.61. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: GhostRider - Hash Count: 1Mba4080120160200185.2187.41. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Heavy - Hash Count: 1Mba300600900120015001282.11298.81. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Femto UPX2 - Hash Count: 1Mba300600900120015001281.71302.31. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

Java SciMark

This test runs the Java version of SciMark 2, which is a benchmark for scientific and numerical computing developed by programmers at the National Institute of Standards and Technology. This benchmark is made up of Fast Foruier Transform, Jacobi Successive Over-relaxation, Monte Carlo, Sparse Matrix Multiply, and dense LU matrix factorization benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Compositeab60012001800240030002605.952611.98

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Monte Carloab2004006008001000935.32936.54

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Fast Fourier Transformba110220330440550516.53518.57

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Sparse Matrix Multiplyba4008001200160020001994.161999.02

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Dense LU Matrix Factorizationab2K4K6K8K10K8173.698211.45

OpenBenchmarking.orgMflops, More Is BetterJava SciMark 2.2Computational Test: Jacobi Successive Over-Relaxationba300600900120015001401.221403.14

WebP2 Image Encode

This is a test of Google's libwebp2 library with the WebP2 image encode utility and using a sample 6000x4000 pixel JPEG image as the input, similar to the WebP/libwebp test profile. WebP2 is currently experimental and under heavy development as ultimately the successor to WebP. WebP2 supports 10-bit HDR, more efficienct lossy compression, improved lossless compression, animation support, and full multi-threading support compared to WebP. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Defaultba0.5851.171.7552.342.9252.452.601. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 75, Compression Effort 7ab0.00680.01360.02040.02720.0340.030.031. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 95, Compression Effort 7ab0.00230.00460.00690.00920.01150.010.011. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

OpenBenchmarking.orgMP/s, More Is BetterWebP2 Image Encode 20220823Encode Settings: Quality 100, Compression Effort 5ab0.21380.42760.64140.85521.0690.950.951. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl

Encode Settings: Quality 100, Lossless Compression

a: Test failed to run.

b: Test failed to run.

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kba0.20070.40140.60210.80281.00350.8580.8921. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kba2468106.7657.0441. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kba71421283528.2331.311. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kba81624324031.8733.861. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pba0.82891.65782.48673.31564.14453.6053.6841. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pab61218243026.0426.971. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pab4080120160200192.19192.671. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080pab60120180240300254.96256.081. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenSSL

OpenSSL is an open-source toolkit that implements SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols. The system/openssl test profiles relies on benchmarking the system/OS-supplied openssl binary rather than the pts/openssl test profile that uses the locally-built OpenSSL for benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: SHA256ba500M1000M1500M2000M2500M210403905021393842301. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: SHA512ba200M400M600M800M1000M8130513808560377901. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgsign/s, More Is BetterOpenSSLAlgorithm: RSA4096ba170340510680850727.2769.01. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgverify/s, More Is BetterOpenSSLAlgorithm: RSA4096ba10K20K30K40K50K43229.045019.31. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: ChaCha20ba3000M6000M9000M12000M15000M14830093930153756472701. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: AES-128-GCMba3000M6000M9000M12000M15000M15081739060152028908201. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: AES-256-GCMba3000M6000M9000M12000M15000M12548378350133641079501. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

OpenBenchmarking.orgbyte/s, More Is BetterOpenSSLAlgorithm: ChaCha20-Poly1305ba2000M4000M6000M8000M10000M9830306880105360567001. OpenSSL 3.0.8 7 Feb 2023 (Library: OpenSSL 3.0.8 7 Feb 2023)

Apache Spark TPC-H

This is a benchmark of Apache Spark using TPC-H data-set. Apache Spark is an open-source unified analytics engine for large-scale data processing and dealing with big data. This test profile benchmarks the Apache Spark in a single-system configuration using spark-submit. The test makes use of https://github.com/ssavvides/tpch-spark/ for facilitating the TPC-H benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterApache Spark TPC-H 3.5Scale Factor: 1 - Geometric Mean Of All Queriesba1.0822.1643.2464.3285.414.80874364.7325257MIN: 2.02 / MAX: 20.04MIN: 1.72 / MAX: 20.62

OpenBenchmarking.orgSeconds, Fewer Is BetterApache Spark TPC-H 3.5Scale Factor: 10 - Geometric Mean Of All Queriesab102030405041.8241.34MIN: 10.6 / MAX: 196.26MIN: 10.96 / MAX: 189.4

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba0.47410.94821.42231.89642.37051.97362.1073

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba20040060080010001010.44946.79

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamba0.48380.96761.45141.93522.4192.09782.1503

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamba100200300400500476.67465.03

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba2040608010083.3884.71

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba61218243023.9423.57

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamba2040608010075.0676.32

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamba369121513.3113.09

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamba81624324033.0834.00

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamba142842567060.4158.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamba81624324032.5133.34

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamba71421283530.7529.98

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba50100150200250227.73233.27

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba2468108.75478.5472

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamba50100150200250194.45209.81

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamba1.1542.3083.4624.6165.775.12884.7530

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamba4812162013.5714.02

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamba306090120150147.35142.62

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamba369121512.4212.45

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamba2040608010080.5180.29

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamba0.60861.21721.82582.43443.0432.65212.7047

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamba160320480640800752.24737.65

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamba0.60191.20381.80572.40763.00952.63912.6753

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamba80160240320400378.91373.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba81624324033.3434.28

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba132639526559.9358.30

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamba81624324032.7533.29

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamba71421283530.5130.02

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamba4812162013.9114.16

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamba306090120150143.49141.23

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamba369121512.7012.85

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamba2040608010078.7277.81

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba51015202519.3019.38

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba20406080100103.50103.17

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamba4812162018.0418.22

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamba122436486055.4354.87

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamba0.94681.89362.84043.78724.7344.16574.2078

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamba100200300400500480.05475.16

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamba0.97991.95982.93973.91964.89954.26334.3550

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamba50100150200250234.54229.59

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba91827364536.9837.34

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba122436486054.0453.52

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamba81624324033.4433.76

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamba71421283529.8929.60

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba0.48440.96881.45321.93762.4222.1422.153

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba2004006008001000931.34926.22

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamba0.48380.96761.45141.93522.4192.13452.1502

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamba100200300400500468.48465.05

ScyllaDB

This is a benchmark of ScyllaDB and is making use of Apache Cassandra's cassandra-stress for conducting the benchmark. ScyllaDB is an open-source distributed NoSQL data store that is compatible with Apache Cassandra while focusing on higher throughput and lower latency. ScyllaDB uses a sharded design on each node. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterScyllaDB 5.2.9Test: Writesba6K12K18K24K30K2547527851

85 Results Shown

LeelaChessZero:
  BLAS
  Eigen
Xmrig:
  KawPow - 1M
  Monero - 1M
  Wownero - 1M
  GhostRider - 1M
  CryptoNight-Heavy - 1M
  CryptoNight-Femto UPX2 - 1M
Java SciMark:
  Composite
  Monte Carlo
  Fast Fourier Transform
  Sparse Matrix Multiply
  Dense LU Matrix Factorization
  Jacobi Successive Over-Relaxation
WebP2 Image Encode:
  Default
  Quality 75, Compression Effort 7
  Quality 95, Compression Effort 7
  Quality 100, Compression Effort 5
SVT-AV1:
  Preset 4 - Bosphorus 4K
  Preset 8 - Bosphorus 4K
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
OpenSSL:
  SHA256
  SHA512
  RSA4096
  RSA4096
  ChaCha20
  AES-128-GCM
  AES-256-GCM
  ChaCha20-Poly1305
Apache Spark TPC-H:
  1 - Geometric Mean Of All Queries
  10 - Geometric Mean Of All Queries
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    items/sec
    ms/batch
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Baseline - Synchronous Single-Stream:
    items/sec
    ms/batch
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering - Synchronous Single-Stream:
    items/sec
    ms/batch
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    items/sec
    ms/batch
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    items/sec
    ms/batch
ScyllaDB