AMD Ryzen 7 4700U testing with a LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS) and AMD Renoir 512MB on Ubuntu 23.04 via the Phoronix Test Suite.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced
Java Notes: OpenJDK Runtime Environment (build 17.0.7+7-Ubuntu-0ubuntu123.04)
Python Notes: Python 3.11.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT disabled + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: disabled RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Processor: AMD Ryzen 7 4700U @ 2.00GHz (8 Cores), Motherboard: LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS), Chipset: AMD Renoir/Cezanne, Memory: 16GB, Disk: 512GB SAMSUNG MZALQ512HALU-000L2, Graphics: AMD Renoir 512MB (1600/400MHz), Audio: AMD Renoir Radeon HD Audio, Network: Intel Wi-Fi 6 AX200
OS: Ubuntu 23.04, Kernel: 6.2.0-24-generic (x86_64), Desktop: GNOME Shell 44.2, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49), Compiler: GCC 12.2.0, File-System: ext4, Screen Resolution: 1920x1080
OS: Ubuntu 23.04, Kernel: 6.2.0-24-generic (x86_64), Desktop: GNOME Shell 44.2, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49), Compiler: GCC 12.3.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced
Java Notes: OpenJDK Runtime Environment (build 17.0.8.1+1-Ubuntu-0ubuntu123.04)
Python Notes: Python 3.11.4
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT disabled + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: disabled RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.
This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.
This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
VVenC is the Fraunhofer Versatile Video Encoder as a fast/efficient H.266/VVC encoder. The vvenc encoder makes use of SIMD Everywhere (SIMDe). The vvenc software is published under the Clear BSD License. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
VVenC is the Fraunhofer Versatile Video Encoder as a fast/efficient H.266/VVC encoder. The vvenc encoder makes use of SIMD Everywhere (SIMDe). The vvenc software is published under the Clear BSD License. Learn more via the OpenBenchmarking.org test page.
This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
VVenC is the Fraunhofer Versatile Video Encoder as a fast/efficient H.266/VVC encoder. The vvenc encoder makes use of SIMD Everywhere (SIMDe). The vvenc software is published under the Clear BSD License. Learn more via the OpenBenchmarking.org test page.
VVenC is the Fraunhofer Versatile Video Encoder as a fast/efficient H.266/VVC encoder. The vvenc encoder makes use of SIMD Everywhere (SIMDe). The vvenc software is published under the Clear BSD License. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.
This test times how long it takes to build the GNU Compiler Collection (GCC) open-source compiler. Learn more via the OpenBenchmarking.org test page.
The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of the Apache Cassandra NoSQL database management system making use of cassandra-stress. Learn more via the OpenBenchmarking.org test page.
Test: Writes
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU
a: The test run did not produce a result.
b: The test run did not produce a result.
c: The test run did not produce a result.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced
Java Notes: OpenJDK Runtime Environment (build 17.0.7+7-Ubuntu-0ubuntu123.04)
Python Notes: Python 3.11.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT disabled + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: disabled RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 18 October 2023 20:51 by user phoronix.
Processor: AMD Ryzen 7 4700U @ 2.00GHz (8 Cores), Motherboard: LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS), Chipset: AMD Renoir/Cezanne, Memory: 16GB, Disk: 512GB SAMSUNG MZALQ512HALU-000L2, Graphics: AMD Renoir 512MB (1600/400MHz), Audio: AMD Renoir Radeon HD Audio, Network: Intel Wi-Fi 6 AX200
OS: Ubuntu 23.04, Kernel: 6.2.0-24-generic (x86_64), Desktop: GNOME Shell 44.2, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49), Compiler: GCC 12.2.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced
Java Notes: OpenJDK Runtime Environment (build 17.0.7+7-Ubuntu-0ubuntu123.04)
Python Notes: Python 3.11.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT disabled + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: disabled RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 19 October 2023 00:57 by user phoronix.
Processor: AMD Ryzen 7 4700U @ 2.00GHz (8 Cores), Motherboard: LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS), Chipset: AMD Renoir/Cezanne, Memory: 16GB, Disk: 512GB SAMSUNG MZALQ512HALU-000L2, Graphics: AMD Renoir 512MB (1600/400MHz), Audio: AMD Renoir Radeon HD Audio, Network: Intel Wi-Fi 6 AX200
OS: Ubuntu 23.04, Kernel: 6.2.0-24-generic (x86_64), Desktop: GNOME Shell 44.2, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49), Compiler: GCC 12.3.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-DAPbBt/gcc-12-12.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced
Java Notes: OpenJDK Runtime Environment (build 17.0.8.1+1-Ubuntu-0ubuntu123.04)
Python Notes: Python 3.11.4
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT disabled + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: disabled RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 19 October 2023 10:01 by user phoronix.