libavif avifenc

This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF).

To run this test with the Phoronix Test Suite, the basic command is: phoronix-test-suite benchmark avifenc.

Project Site

github.com

Source Repository

github.com

Test Created

2 June 2020

Last Updated

6 April 2024

Test Maintainer

Michael Larabel 

Test Type

Processor

Average Install Time

49 Seconds

Average Run Time

8 Minutes, 48 Seconds

Test Dependencies

C/C++ Compiler Toolchain + CMake + PERL + Yasm Assembler + Meson Build System + Nasm Assembler + PNG Library + JPEG Library

Accolades

70k+ Downloads

Supported Platforms


Public Result Uploads *Reported Installs **Reported Test Completions **Test Profile Page Views ***OpenBenchmarking.orgEventslibavif avifenc Popularity Statisticspts/avifenc2020.062020.082020.102020.122021.022021.042021.062021.082021.102021.122022.022022.042022.062022.082022.102022.122023.022023.042023.062023.082023.102023.122024.022024.042024.062024.082024.107K14K21K28K35K
* Uploading of benchmark result data to OpenBenchmarking.org is always optional (opt-in) via the Phoronix Test Suite for users wishing to share their results publicly.
** Data based on those opting to upload their test results to OpenBenchmarking.org and users enabling the opt-in anonymous statistics reporting while running benchmarks from an Internet-connected platform.
*** Test profile page view reporting began March 2021.
Data updated weekly as of 26 November 2024.
10, Lossless14.5%224.2%619.7%19.0%6, Lossless22.6%Encoder Speed Option PopularityOpenBenchmarking.org

Revision History

pts/avifenc-1.4.1   [View Source]   Sat, 06 Apr 2024 13:09:52 GMT
Update to 1.0.4 point release to fix newer compiler problems, fix Windows build.

pts/avifenc-1.4.0   [View Source]   Mon, 28 Aug 2023 19:28:06 GMT
Update against libavif 1.0 upstream.

pts/avifenc-1.3.0   [View Source]   Fri, 14 Oct 2022 19:58:08 GMT
Update against avifenc 0.11 upstream.

pts/avifenc-1.2.0   [View Source]   Wed, 06 Apr 2022 19:37:17 GMT
Update against libavif 0.10 upstream new release.

pts/avifenc-1.1.1   [View Source]   Tue, 23 Feb 2021 11:12:40 GMT
Limit job count to 64 otherwise the program exits abnormally.

pts/avifenc-1.1.0   [View Source]   Tue, 23 Feb 2021 09:55:44 GMT
Update against upstream libavif 0.9.0.

pts/avifenc-1.0.0   [View Source]   Tue, 02 Jun 2020 11:04:21 GMT
Initial commit of libavif avifenc encode benchmark.

Suites Using This Test

Video Encoding

Encoding

Multi-Core

Imaging

AV1

Creator Workloads


Performance Metrics

Analyze Test Configuration:

libavif avifenc 1.0

Encoder Speed: 2

OpenBenchmarking.org metrics for this test profile configuration based on 1,312 public results since 28 August 2023 with the latest data as of 13 November 2024.

Below is an overview of the generalized performance for components where there is sufficient statistically significant data based upon user-uploaded results. It is important to keep in mind particularly in the Linux/open-source space there can be vastly different OS configurations, with this overview intended to offer just general guidance as to the performance expectations.

Component
Percentile Rank
# Compatible Public Results
Seconds (Average)
82nd
13
35 +/- 1
81st
12
36 +/- 1
Mid-Tier
75th
> 37
53rd
16
45 +/- 1
Median
50th
47
42nd
19
56 +/- 1
38th
12
62 +/- 1
37th
13
63 +/- 1
37th
17
63 +/- 1
32nd
16
66 +/- 2
29th
9
68 +/- 7
Low-Tier
25th
> 71
25th
5
72 +/- 1
24th
8
74 +/- 1
22nd
20
76 +/- 7
21st
5
79 +/- 1
17th
5
87 +/- 3
13th
9
101 +/- 6
12th
11
103 +/- 2
12th
6
103 +/- 1
12th
18
104 +/- 10
11th
5
110 +/- 2
10th
7
118 +/- 1
10th
5
123 +/- 1
8th
4
141 +/- 1
5th
17
170 +/- 4
5th
10
176 +/- 8
3rd
9
222 +/- 13
1st
4
3131 +/- 79
OpenBenchmarking.orgDistribution Of Public Results - Encoder Speed: 21312 Results Range From 21 To 5475 Seconds2113124135146157168179190110111121123113411451156116711781189120012111222123312441255126612771288129913101321133213431354136513761387139814091420143114421453146414751486149715081519153015411552130060090012001500

Based on OpenBenchmarking.org data, the selected test / test configuration (libavif avifenc 1.0 - Encoder Speed: 2) has an average run-time of 4 minutes. By default this test profile is set to run at least 3 times but may increase if the standard deviation exceeds pre-defined defaults or other calculations deem additional runs necessary for greater statistical accuracy of the result.

OpenBenchmarking.orgMinutesTime Required To Complete BenchmarkEncoder Speed: 2Run-Time612182430Min: 1 / Avg: 3.78 / Max: 29

Based on public OpenBenchmarking.org results, the selected test / test configuration has an average standard deviation of 0.1%.

OpenBenchmarking.orgPercent, Fewer Is BetterAverage Deviation Between RunsEncoder Speed: 2Deviation246810Min: 0 / Avg: 0.09 / Max: 1

Does It Scale Well With Increasing Cores?

Yes, based on the automated analysis of the collected public benchmark data, this test / test settings does generally scale well with increasing CPU core counts. Data based on publicly available results for this test / test settings, separated by vendor, result divided by the reference CPU clock speed, grouped by matching physical CPU core count, and normalized against the smallest core count tested from each vendor for each CPU having a sufficient number of test samples and statistically significant data.

IntelAMDOpenBenchmarking.orgRelative Core Scaling To Baselibavif avifenc CPU Core ScalingEncoder Speed: 24681012141624325664961281.833.665.497.329.15

Tested CPU Architectures

This benchmark has been successfully tested on the below mentioned architectures. The CPU architectures listed is where successful OpenBenchmarking.org result uploads occurred, namely for helping to determine if a given test is compatible with various alternative CPU architectures.

CPU Architecture
Kernel Identifier
Verified On
Intel / AMD x86 64-bit
x86_64
(Many Processors)
RISC-V 64-bit
riscv64
SiFive RISC-V, rv64imafdcvsu
ARMv8 64-bit
arm64
Apple M4
ARMv8 64-bit
aarch64
ARMv8 Cortex-A53 4-Core, ARMv8 Cortex-A72 16-Core, ARMv8 Cortex-A72 4-Core, ARMv8 Cortex-A76 4-Core, ARMv8 Cortex-X1, ARMv8 Neoverse-N1, ARMv8 Neoverse-N1 128-Core, ARMv8 Neoverse-N1 64-Core, ARMv8 Neoverse-V1, ARMv8 Neoverse-V1 64-Core, ARMv8 Neoverse-V2 72-Core, ARMv8 Neoverse-V2 96-Core, AmpereOne 192-Core, Apple, Qualcomm

Recent Test Results

OpenBenchmarking.org Results Compare

4 Systems - 237 Benchmark Results

Apple M4 - Apple Mac mini - 16GB

macOS 15.1 - 24.1.0 - GCC 16.0.0 + Clang 16.0.0 + Xcode 16.1

10 Systems - 237 Benchmark Results

8 Systems - 235 Benchmark Results

AMD Ryzen 7 9700X 8-Core - ASUS ROG STRIX X670E-E GAMING WIFI - AMD Device 14d8

Ubuntu 24.04 - 6.10.0-phx - GNOME Shell 46.0

1 System - 97 Benchmark Results

AMD Ryzen 7 5800X3D 8-Core - Gigabyte B450 AORUS M - AMD Starship

ManjaroLinux 24.1.2 - 6.6.59-1-MANJARO - KDE Plasma 6.2.3

Most Popular Test Results

OpenBenchmarking.org Results Compare

3 Systems - 413 Benchmark Results

AMD Ryzen 7 7840HS - Framework Laptop 16 - AMD Device 14e8

Ubuntu 24.04 - 6.10.0-061000rc4daily20240621-generic - GNOME Shell 46.0

6 Systems - 162 Benchmark Results

AMD Ryzen 7 8700G - ASRock B650 Pro RS - AMD Device 14e8

Ubuntu 23.10 - 6.7.0-060700-generic - GNOME Shell 45.0

2 Systems - 831 Benchmark Results

AMD Ryzen 7 7840U - Framework FRANMDCP07 - AMD Device 14e8

Ubuntu 23.10 - 6.7.0-060700rc5-generic - GNOME Shell 45.1

2 Systems - 244 Benchmark Results

AMD Ryzen 9 7900X 12-Core - ASRockRack B650D4U-2L2T/BCM - AMD Device 14d8

Ubuntu 22.04 - 6.6.0-060600rc1daily20230913-generic - GNOME Shell 42.9

18 Systems - 442 Benchmark Results

AMD Ryzen 5 8400F 6-Core - ASUS ROG STRIX X670E-E GAMING WIFI - AMD Device 14e8

Ubuntu 24.04 - 6.10.0-061000rc2-generic - GNOME Shell 46.0

18 Systems - 154 Benchmark Results

AMD Ryzen 5 7600X 6-Core - ASRock B650 Pro RS - AMD Device 14d8

Ubuntu 23.10 - 6.7.0-060700-generic - GNOME Shell 45.0

5 Systems - 89 Benchmark Results

2 x AMD EPYC 9384X 32-Core - AMD Titanite_4G - AMD Device 14a4

Ubuntu 22.04 - 5.15.0-47-generic - GNOME Shell 42.4

4 Systems - 120 Benchmark Results

AMD EPYC 9B14 - Google Compute Engine c3d-standard-60 - Intel 440FX 82441FX PMC

Ubuntu 22.04 - 6.2.0-1014-gcp - 1.3.238

3 Systems - 120 Benchmark Results

AMD EPYC 9B14 - Google Compute Engine c3d-standard-60 - Intel 440FX 82441FX PMC

Ubuntu 22.04 - 6.2.0-1014-gcp - 1.3.238

2 Systems - 339 Benchmark Results

AMD Ryzen 7 7800X3D 8-Core - ASUS ProArt B650-CREATOR - AMD Device 14d8

Debian 12 - 6.5.0-0.deb12.1-amd64 - Xfce 4.18

3 Systems - 232 Benchmark Results

ARMv8 Neoverse-N1 - GIGABYTE MP32-AR2-00 v01000100 - Ampere Computing LLC Altra PCI Root Complex A

Ubuntu 23.10 - 6.5.0-9-generic - GCC 13.2.0

7 Systems - 223 Benchmark Results

Intel Core i7-1165G7 - Dell 0GG9PT - Intel Tiger Lake-LP

Ubuntu 23.10 - 6.3.0-7-generic - GNOME Shell

2 Systems - 120 Benchmark Results

AMD EPYC 9B14 - Google Compute Engine c3d-standard-60 - Intel 440FX 82441FX PMC

Ubuntu 22.04 - 6.2.0-1014-gcp - 1.3.238

Find More Test Results