sys76-kudu-ml-nvidia

AMD Ryzen 9 5900HX testing with a System76 Kudu (1.07.09RSA1 BIOS) and NVIDIA GeForce RTX 3060 Laptop GPU 6GB on Pop 21.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2202175-NE-SYS76KUDU28
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
NVIDIA GeForce RTX 3060 Laptop GPU
February 16 2022
  8 Hours, 31 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


sys76-kudu-ml-nvidiaOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads)System76 Kudu (1.07.09RSA1 BIOS)AMD Renoir/Cezanne16GBSamsung SSD 970 EVO Plus 500GBNVIDIA GeForce RTX 3060 Laptop GPU 6GBNVIDIA Device 228eRealtek RTL8125 2.5GbE + Intel Wi-Fi 6 AX200Pop 21.105.15.15-76051515-generic (x86_64)GNOME Shell 40.5X Server 1.20.13NVIDIA 470.864.6.0OpenCL 3.0 CUDA 11.4.1581.2.182GCC 11.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLOpenCLVulkanCompilerFile-SystemScreen ResolutionSys76-kudu-ml-nvidia BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa50000c - GLAMOR - BAR1 / Visible vRAM Size: 8192 MiB- GPU Compute Cores: 3840- Python 3.9.7- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected

sys76-kudu-ml-nvidiashoc: OpenCL - S3Dshoc: OpenCL - Triadshoc: OpenCL - FFT SPshoc: OpenCL - MD5 Hashshoc: OpenCL - Reductionshoc: OpenCL - GEMM SGEMM_Nshoc: OpenCL - Max SP Flopsshoc: OpenCL - Bus Speed Downloadshoc: OpenCL - Bus Speed Readbackshoc: OpenCL - Texture Read Bandwidthlczero: BLASonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPUnumpy: deepspeech: CPUrbenchmark: rnnoise: tensorflow-lite: SqueezeNettensorflow-lite: Inception V4tensorflow-lite: NASNet Mobiletensorflow-lite: Mobilenet Floattensorflow-lite: Mobilenet Quanttensorflow-lite: Inception ResNet V2caffe: AlexNet - CPU - 100caffe: AlexNet - CPU - 200caffe: AlexNet - CPU - 1000caffe: GoogleNet - CPU - 100caffe: GoogleNet - CPU - 200caffe: GoogleNet - CPU - 1000mnn: mobilenetV3mnn: squeezenetv1.1mnn: resnet-v2-50mnn: SqueezeNetV1.0mnn: MobileNetV2_224mnn: mobilenet-v1-1.0mnn: inception-v3ncnn: CPU - mobilenetncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU - shufflenet-v2ncnn: CPU - mnasnetncnn: CPU - efficientnet-b0ncnn: CPU - blazefacencnn: CPU - googlenetncnn: CPU - vgg16ncnn: CPU - resnet18ncnn: CPU - alexnetncnn: CPU - resnet50ncnn: CPU - yolov4-tinyncnn: CPU - squeezenet_ssdncnn: CPU - regnety_400mncnn: Vulkan GPU - mobilenetncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - googlenetncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - regnety_400mtnn: CPU - DenseNettnn: CPU - MobileNet v2tnn: CPU - SqueezeNet v2tnn: CPU - SqueezeNet v1.1plaidml: No - Inference - VGG16 - CPUplaidml: No - Inference - ResNet 50 - CPUecp-candle: P1B2ecp-candle: P3B1ecp-candle: P3B2mlpack: scikit_icamlpack: scikit_qdamlpack: scikit_svmmlpack: scikit_linearridgeregressionopencv: DNN - Deep Neural NetworkNVIDIA GeForce RTX 3060 Laptop GPU166.2826.5530877.30716.2706295.5672765.3315066.76.69266.76481309.855654.3084211.27351.631272.4793622.53318.341546.7158623.30452.120663.180773570.142135.563566.362164.934.609663558.732164.423.00110432.8668.951800.126116.110190603275859315181412787114134524863773327865872325342868001743738661361.1992.77322.6064.4902.3852.41131.92315.694.003.482.743.245.261.1913.4470.9015.9214.6325.2725.1118.566.8510.64.024.662.883.9610.031.349.0144.996.516.7313.3619.0119.635.792721.407250.12954.863222.65113.267.0035.1841473.428716.51448.3166.0417.592.0928019OpenBenchmarking.org

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: S3DNVIDIA GeForce RTX 3060 Laptop GPU4080120160200SE +/- 0.03, N = 3166.281. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: TriadNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.0003, N = 36.55301. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: FFT SPNVIDIA GeForce RTX 3060 Laptop GPU2004006008001000SE +/- 0.02, N = 3877.311. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGHash/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: MD5 HashNVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.02, N = 316.271. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: ReductionNVIDIA GeForce RTX 3060 Laptop GPU60120180240300SE +/- 0.07, N = 3295.571. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: GEMM SGEMM_NNVIDIA GeForce RTX 3060 Laptop GPU6001200180024003000SE +/- 14.73, N = 32765.331. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Max SP FlopsNVIDIA GeForce RTX 3060 Laptop GPU3K6K9K12K15KSE +/- 19.26, N = 315066.71. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Bus Speed DownloadNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.0004, N = 36.69261. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Bus Speed ReadbackNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.0000, N = 36.76481. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Texture Read BandwidthNVIDIA GeForce RTX 3060 Laptop GPU30060090012001500SE +/- 2.56, N = 31309.851. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: BLASNVIDIA GeForce RTX 3060 Laptop GPU120240360480600SE +/- 6.66, N = 35651. (CXX) g++ options: -flto -pthread

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI initiative. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.96941.93882.90823.87764.847SE +/- 0.05326, N = 44.30842MIN: 3.941. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.01, N = 311.27MIN: 10.741. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.3670.7341.1011.4681.835SE +/- 0.00737, N = 31.63127MIN: 1.491. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.55791.11581.67372.23162.7895SE +/- 0.03298, N = 152.47936MIN: 2.321. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU510152025SE +/- 0.04, N = 322.53MIN: 21.511. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.01115, N = 38.34154MIN: 4.811. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.01705, N = 36.71586MIN: 6.541. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU612182430SE +/- 0.05, N = 323.30MIN: 22.331. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.47710.95421.43131.90842.3855SE +/- 0.00175, N = 32.12066MIN: 1.951. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.71571.43142.14712.86283.5785SE +/- 0.03473, N = 33.18077MIN: 2.721. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU8001600240032004000SE +/- 11.16, N = 33570.14MIN: 3520.531. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU5001000150020002500SE +/- 5.46, N = 32135.56MIN: 2104.011. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU8001600240032004000SE +/- 5.55, N = 33566.36MIN: 3515.621. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU5001000150020002500SE +/- 1.37, N = 32164.93MIN: 2138.251. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU1.03722.07443.11164.14885.186SE +/- 0.00366, N = 34.60966MIN: 4.421. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU8001600240032004000SE +/- 6.65, N = 33558.73MIN: 3513.191. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU5001000150020002500SE +/- 15.52, N = 32164.42MIN: 2113.311. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 2.1.2Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPUNVIDIA GeForce RTX 3060 Laptop GPU0.67521.35042.02562.70083.376SE +/- 0.00612, N = 33.00110MIN: 2.771. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkNVIDIA GeForce RTX 3060 Laptop GPU90180270360450SE +/- 0.83, N = 3432.86

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6Acceleration: CPUNVIDIA GeForce RTX 3060 Laptop GPU1530456075SE +/- 0.10, N = 368.95

R Benchmark

This test is a quick-running survey of general R performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterR BenchmarkNVIDIA GeForce RTX 3060 Laptop GPU0.02840.05680.08520.11360.142SE +/- 0.0004, N = 30.12611. R scripting front-end version 4.0.4 (2021-02-15)

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28NVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.02, N = 316.111. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: SqueezeNetNVIDIA GeForce RTX 3060 Laptop GPU40K80K120K160K200KSE +/- 32.83, N = 3190603

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Inception V4NVIDIA GeForce RTX 3060 Laptop GPU600K1200K1800K2400K3000KSE +/- 636.98, N = 32758593

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: NASNet MobileNVIDIA GeForce RTX 3060 Laptop GPU30K60K90K120K150KSE +/- 523.89, N = 3151814

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Mobilenet FloatNVIDIA GeForce RTX 3060 Laptop GPU30K60K90K120K150KSE +/- 44.24, N = 3127871

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Mobilenet QuantNVIDIA GeForce RTX 3060 Laptop GPU30K60K90K120K150KSE +/- 185.90, N = 3141345

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Inception ResNet V2NVIDIA GeForce RTX 3060 Laptop GPU500K1000K1500K2000K2500KSE +/- 1929.87, N = 32486377

Tensorflow

This is a benchmark of the Tensorflow deep learning framework using the CIFAR10 data set. Learn more via the OpenBenchmarking.org test page.

Build: Cifar10

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: AttributeError: module 'tensorflow' has no attribute 'app'

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 100NVIDIA GeForce RTX 3060 Laptop GPU7K14K21K28K35KSE +/- 36.37, N = 3332781. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 200NVIDIA GeForce RTX 3060 Laptop GPU14K28K42K56K70KSE +/- 77.42, N = 3658721. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1000NVIDIA GeForce RTX 3060 Laptop GPU70K140K210K280K350KSE +/- 901.36, N = 33253421. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 100NVIDIA GeForce RTX 3060 Laptop GPU20K40K60K80K100KSE +/- 83.58, N = 3868001. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 200NVIDIA GeForce RTX 3060 Laptop GPU40K80K120K160K200KSE +/- 519.84, N = 31743731. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 1000NVIDIA GeForce RTX 3060 Laptop GPU200K400K600K800K1000KSE +/- 360.03, N = 38661361. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by Alibaba. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: mobilenetV3NVIDIA GeForce RTX 3060 Laptop GPU0.26980.53960.80941.07921.349SE +/- 0.004, N = 31.199MIN: 1.14 / MAX: 9.81. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: squeezenetv1.1NVIDIA GeForce RTX 3060 Laptop GPU0.62391.24781.87172.49563.1195SE +/- 0.014, N = 32.773MIN: 2.57 / MAX: 11.721. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: resnet-v2-50NVIDIA GeForce RTX 3060 Laptop GPU510152025SE +/- 0.23, N = 322.61MIN: 21.44 / MAX: 48.441. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: SqueezeNetV1.0NVIDIA GeForce RTX 3060 Laptop GPU1.01032.02063.03094.04125.0515SE +/- 0.077, N = 34.490MIN: 4.31 / MAX: 10.281. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: MobileNetV2_224NVIDIA GeForce RTX 3060 Laptop GPU0.53661.07321.60982.14642.683SE +/- 0.012, N = 32.385MIN: 2.24 / MAX: 20.061. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: mobilenet-v1-1.0NVIDIA GeForce RTX 3060 Laptop GPU0.54251.0851.62752.172.7125SE +/- 0.039, N = 32.411MIN: 2.17 / MAX: 19.271. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 1.2Model: inception-v3NVIDIA GeForce RTX 3060 Laptop GPU714212835SE +/- 0.30, N = 331.92MIN: 29.4 / MAX: 49.51. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: mobilenetNVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.22, N = 315.69MIN: 14.93 / MAX: 221. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU-v2-v2 - Model: mobilenet-v2NVIDIA GeForce RTX 3060 Laptop GPU0.91.82.73.64.5SE +/- 0.01, N = 34.00MIN: 3.73 / MAX: 9.61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU-v3-v3 - Model: mobilenet-v3NVIDIA GeForce RTX 3060 Laptop GPU0.7831.5662.3493.1323.915SE +/- 0.01, N = 33.48MIN: 3.18 / MAX: 9.981. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: shufflenet-v2NVIDIA GeForce RTX 3060 Laptop GPU0.61651.2331.84952.4663.0825SE +/- 0.02, N = 32.74MIN: 2.46 / MAX: 14.431. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: mnasnetNVIDIA GeForce RTX 3060 Laptop GPU0.7291.4582.1872.9163.645SE +/- 0.01, N = 33.24MIN: 2.91 / MAX: 8.641. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: efficientnet-b0NVIDIA GeForce RTX 3060 Laptop GPU1.18352.3673.55054.7345.9175SE +/- 0.01, N = 35.26MIN: 4.89 / MAX: 15.181. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: blazefaceNVIDIA GeForce RTX 3060 Laptop GPU0.26780.53560.80341.07121.339SE +/- 0.01, N = 31.19MIN: 1.15 / MAX: 6.671. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: googlenetNVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.37, N = 313.44MIN: 12.49 / MAX: 28.691. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: vgg16NVIDIA GeForce RTX 3060 Laptop GPU1632486480SE +/- 0.04, N = 370.90MIN: 69.81 / MAX: 84.031. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: resnet18NVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.44, N = 315.92MIN: 14.75 / MAX: 26.771. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: alexnetNVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.02, N = 314.63MIN: 14.11 / MAX: 22.91. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: resnet50NVIDIA GeForce RTX 3060 Laptop GPU612182430SE +/- 0.08, N = 325.27MIN: 24.15 / MAX: 39.621. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: yolov4-tinyNVIDIA GeForce RTX 3060 Laptop GPU612182430SE +/- 0.08, N = 325.11MIN: 24.08 / MAX: 47.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: squeezenet_ssdNVIDIA GeForce RTX 3060 Laptop GPU510152025SE +/- 0.06, N = 318.56MIN: 17.91 / MAX: 26.491. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: CPU - Model: regnety_400mNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.02, N = 36.85MIN: 6.35 / MAX: 16.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: mobilenetNVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.09, N = 310.6MIN: 9.57 / MAX: 13.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2NVIDIA GeForce RTX 3060 Laptop GPU0.90451.8092.71353.6184.5225SE +/- 0.09, N = 34.02MIN: 3.54 / MAX: 6.661. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3NVIDIA GeForce RTX 3060 Laptop GPU1.04852.0973.14554.1945.2425SE +/- 0.07, N = 34.66MIN: 4.22 / MAX: 8.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: shufflenet-v2NVIDIA GeForce RTX 3060 Laptop GPU0.6481.2961.9442.5923.24SE +/- 0.01, N = 32.88MIN: 2.33 / MAX: 4.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: mnasnetNVIDIA GeForce RTX 3060 Laptop GPU0.8911.7822.6733.5644.455SE +/- 0.04, N = 33.96MIN: 3.55 / MAX: 7.811. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: efficientnet-b0NVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.10, N = 310.03MIN: 9.08 / MAX: 16.521. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: blazefaceNVIDIA GeForce RTX 3060 Laptop GPU0.30150.6030.90451.2061.5075SE +/- 0.03, N = 31.34MIN: 1.18 / MAX: 2.631. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: googlenetNVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.01, N = 39.01MIN: 8.1 / MAX: 13.741. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: vgg16NVIDIA GeForce RTX 3060 Laptop GPU1020304050SE +/- 0.01, N = 344.99MIN: 44.03 / MAX: 51.731. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: resnet18NVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.21, N = 36.51MIN: 5.75 / MAX: 13.731. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: alexnetNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.20, N = 36.73MIN: 6.02 / MAX: 10.211. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: resnet50NVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.05, N = 313.36MIN: 12.46 / MAX: 19.031. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: yolov4-tinyNVIDIA GeForce RTX 3060 Laptop GPU510152025SE +/- 0.43, N = 319.01MIN: 17.19 / MAX: 30.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: squeezenet_ssdNVIDIA GeForce RTX 3060 Laptop GPU510152025SE +/- 4.25, N = 319.63MIN: 13.92 / MAX: 38.561. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210720Target: Vulkan GPU - Model: regnety_400mNVIDIA GeForce RTX 3060 Laptop GPU1.30282.60563.90845.21126.514SE +/- 0.14, N = 35.79MIN: 4.79 / MAX: 9.381. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: DenseNetNVIDIA GeForce RTX 3060 Laptop GPU6001200180024003000SE +/- 2.86, N = 32721.41MIN: 2675.12 / MAX: 2805.371. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: MobileNet v2NVIDIA GeForce RTX 3060 Laptop GPU50100150200250SE +/- 0.45, N = 3250.13MIN: 247.81 / MAX: 257.681. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v2NVIDIA GeForce RTX 3060 Laptop GPU1224364860SE +/- 0.15, N = 354.86MIN: 54.44 / MAX: 55.551. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v1.1NVIDIA GeForce RTX 3060 Laptop GPU50100150200250SE +/- 0.12, N = 3222.65MIN: 221.97 / MAX: 223.851. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUNVIDIA GeForce RTX 3060 Laptop GPU3691215SE +/- 0.11, N = 1213.26

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUNVIDIA GeForce RTX 3060 Laptop GPU246810SE +/- 0.02, N = 37.00

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

Model: Face Detection 0106 FP16 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Face Detection 0106 FP32 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Person Detection 0106 FP16 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Person Detection 0106 FP32 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Face Detection 0106 FP16 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Face Detection 0106 FP32 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Person Detection 0106 FP16 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Person Detection 0106 FP32 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Age Gender Recognition Retail 0013 FP32 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Age Gender Recognition Retail 0013 FP16 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

Model: Age Gender Recognition Retail 0013 FP32 - Device: Intel GPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ./openvino: line 2: ./openvino-github-2021/bin/intel64/Release/benchmark_app: No such file or directory

ECP-CANDLE

The CANDLE benchmark codes implement deep learning architectures relevant to problems in cancer. These architectures address problems at different biological scales, specifically problems at the molecular, cellular and population scales. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterECP-CANDLE 0.4Benchmark: P1B2NVIDIA GeForce RTX 3060 Laptop GPU81624324035.18

OpenBenchmarking.orgSeconds, Fewer Is BetterECP-CANDLE 0.4Benchmark: P3B1NVIDIA GeForce RTX 3060 Laptop GPU300600900120015001473.43

OpenBenchmarking.orgSeconds, Fewer Is BetterECP-CANDLE 0.4Benchmark: P3B2NVIDIA GeForce RTX 3060 Laptop GPU150300450600750716.51

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial timeseries data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

Detector: EXPoSE

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Relative Entropy

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Windowed Gaussian

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Earthgecko Skyline

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Bayesian Changepoint

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Zoo. Learn more via the OpenBenchmarking.org test page.

Model: yolov4 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "yolov4/yolov4.onnx" failed: No such file or directory

Model: fcn-resnet101-11 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "fcn-resnet101-11/model.onnx" failed: No such file or directory

Model: shufflenet-v2-10 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "model/test_shufflenetv2/model.onnx" failed: No such file or directory

Model: super-resolution-10 - Device: CPU

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: onnxruntime/onnxruntime/test/onnx/onnx_model_info.cc:45 void OnnxModelInfo::InitOnnxModelInfo(const PATH_CHAR_TYPE*) open file "super_resolution/super_resolution.onnx" failed: No such file or directory

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

NVIDIA GeForce RTX 3060 Laptop GPU: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaNVIDIA GeForce RTX 3060 Laptop GPU1122334455SE +/- 0.07, N = 348.31

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdaNVIDIA GeForce RTX 3060 Laptop GPU1530456075SE +/- 0.17, N = 366.04

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmNVIDIA GeForce RTX 3060 Laptop GPU48121620SE +/- 0.04, N = 317.59

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionNVIDIA GeForce RTX 3060 Laptop GPU0.47030.94061.41091.88122.3515SE +/- 0.01, N = 32.09

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.5.4Test: DNN - Deep Neural NetworkNVIDIA GeForce RTX 3060 Laptop GPU6K12K18K24K30KSE +/- 568.38, N = 15280191. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

96 Results Shown

SHOC Scalable HeterOgeneous Computing:
  OpenCL - S3D
  OpenCL - Triad
  OpenCL - FFT SP
  OpenCL - MD5 Hash
  OpenCL - Reduction
  OpenCL - GEMM SGEMM_N
  OpenCL - Max SP Flops
  OpenCL - Bus Speed Download
  OpenCL - Bus Speed Readback
  OpenCL - Texture Read Bandwidth
LeelaChessZero
oneDNN:
  IP Shapes 1D - f32 - CPU
  IP Shapes 3D - f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
  Convolution Batch Shapes Auto - f32 - CPU
  Deconvolution Batch shapes_1d - f32 - CPU
  Deconvolution Batch shapes_3d - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
  Recurrent Neural Network Training - f32 - CPU
  Recurrent Neural Network Inference - f32 - CPU
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Matrix Multiply Batch Shapes Transformer - f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU
Numpy Benchmark
DeepSpeech
R Benchmark
RNNoise
TensorFlow Lite:
  SqueezeNet
  Inception V4
  NASNet Mobile
  Mobilenet Float
  Mobilenet Quant
  Inception ResNet V2
Caffe:
  AlexNet - CPU - 100
  AlexNet - CPU - 200
  AlexNet - CPU - 1000
  GoogleNet - CPU - 100
  GoogleNet - CPU - 200
  GoogleNet - CPU - 1000
Mobile Neural Network:
  mobilenetV3
  squeezenetv1.1
  resnet-v2-50
  SqueezeNetV1.0
  MobileNetV2_224
  mobilenet-v1-1.0
  inception-v3
NCNN:
  CPU - mobilenet
  CPU-v2-v2 - mobilenet-v2
  CPU-v3-v3 - mobilenet-v3
  CPU - shufflenet-v2
  CPU - mnasnet
  CPU - efficientnet-b0
  CPU - blazeface
  CPU - googlenet
  CPU - vgg16
  CPU - resnet18
  CPU - alexnet
  CPU - resnet50
  CPU - yolov4-tiny
  CPU - squeezenet_ssd
  CPU - regnety_400m
  Vulkan GPU - mobilenet
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU-v3-v3 - mobilenet-v3
  Vulkan GPU - shufflenet-v2
  Vulkan GPU - mnasnet
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - blazeface
  Vulkan GPU - googlenet
  Vulkan GPU - vgg16
  Vulkan GPU - resnet18
  Vulkan GPU - alexnet
  Vulkan GPU - resnet50
  Vulkan GPU - yolov4-tiny
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - regnety_400m
TNN:
  CPU - DenseNet
  CPU - MobileNet v2
  CPU - SqueezeNet v2
  CPU - SqueezeNet v1.1
PlaidML:
  No - Inference - VGG16 - CPU
  No - Inference - ResNet 50 - CPU
ECP-CANDLE:
  P1B2
  P3B1
  P3B2
Mlpack Benchmark:
  scikit_ica
  scikit_qda
  scikit_svm
  scikit_linearridgeregression
OpenCV