AMD Ryzen 9 5950X 16-Core testing with a ASUS ROG CROSSHAIR VIII HERO (WI-FI) (3801 BIOS) and NVIDIA GeForce RTX 3090 24GB on Ubuntu 21.10 via the Phoronix Test Suite.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa201016
Graphics Notes: BAR1 / Visible vRAM Size: 32768 MiB
OpenCL Notes: GPU Compute Cores: 10496
Python Notes: Python 3.9.7
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Processor: AMD Ryzen 9 5950X 16-Core @ 3.40GHz (16 Cores / 32 Threads), Motherboard: ASUS ROG CROSSHAIR VIII HERO (WI-FI) (3801 BIOS), Chipset: AMD Starship/Matisse, Memory: 32GB, Disk: 1000GB Sabrent Rocket 4.0 Plus, Graphics: NVIDIA GeForce RTX 3090 24GB, Audio: NVIDIA GA102 HD Audio, Monitor: ASUS MG28U, Network: Realtek RTL8125 2.5GbE + Intel I211 + Intel Wi-Fi 6 AX200
OS: Ubuntu 21.10, Kernel: 5.13.0-22-generic (x86_64), Desktop: GNOME Shell 40.5, Display Server: X Server 1.20.13, Display Driver: NVIDIA 495.44, OpenGL: 4.6.0, OpenCL: OpenCL 3.0 CUDA 11.5.100, Vulkan: 1.2.186, Compiler: GCC 11.2.0 + Clang 13.0.0-2, File-System: ext4, Screen Resolution: 3840x2160
Vkpeak is a Vulkan compute benchmark inspired by OpenCL's clpeak. Vkpeak provides Vulkan compute performance measurements for FP16 / FP32 / FP64 / INT16 / INT32 scalar and vec4 performance. Learn more via the OpenBenchmarking.org test page.
RealSR-NCNN is an NCNN neural network implementation of the RealSR project and accelerated using the Vulkan API. RealSR is the Real-World Super Resolution via Kernel Estimation and Noise Injection. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image by a scale of 4x with Vulkan. Learn more via the OpenBenchmarking.org test page.
Waifu2x-NCNN is an NCNN neural network implementation of the Waifu2x converter project and accelerated using the Vulkan API. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image with Vulkan. Learn more via the OpenBenchmarking.org test page.
Scale: 2x - Denoise: 3 - TAA: No
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
VkFFT is a Fast Fourier Transform (FFT) Library that is GPU accelerated by means of the Vulkan API. The VkFFT benchmark runs FFT performance differences of many different sizes before returning an overall benchmark score. Learn more via the OpenBenchmarking.org test page.
Hashcat is an open-source, advanced password recovery tool supporting GPU acceleration with OpenCL, NVIDIA CUDA, and Radeon ROCm. Learn more via the OpenBenchmarking.org test page.
A benchmark suite for GPUs on mixed operational intensity kernels. Learn more via the OpenBenchmarking.org test page.
Backend: OpenCL - Benchmark: Integer
RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
Backend: NVIDIA CUDA - Benchmark: Integer
RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
Backend: OpenCL - Benchmark: Double Precision
RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
Backend: OpenCL - Benchmark: Single Precision
RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-ocl-ro: not found
Backend: NVIDIA CUDA - Benchmark: Half Precision
RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
Backend: NVIDIA CUDA - Benchmark: Double Precision
RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
Backend: NVIDIA CUDA - Benchmark: Single Precision
RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA RTX 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
NVIDIA 3090: ./mixbench: 3: ./mixbench-cuda-ro: not found
The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.
Libplacebo is a multimedia rendering library based on the core rendering code of the MPV player. The libplacebo benchmark relies on the Vulkan API and tests various primitives. Learn more via the OpenBenchmarking.org test page.
RTX 3090: The test quit with a non-zero exit status.
NVIDIA RTX 3090: The test quit with a non-zero exit status.
NVIDIA 3090: The test quit with a non-zero exit status.
A basic OpenCL memory benchmark. Learn more via the OpenBenchmarking.org test page.
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. This version of the NAMD test profile uses CUDA GPU acceleration. Learn more via the OpenBenchmarking.org test page.
Betsy is an open-source GPU compressor of various GPU compression techniques. Betsy is written in GLSL for Vulkan/OpenGL (compute shader) support for GPU-based texture compression. Learn more via the OpenBenchmarking.org test page.
Codec: ETC1 - Quality: Highest
RTX 3090: ./betsy: 3: ./betsy: not found
NVIDIA RTX 3090: ./betsy: 3: ./betsy: not found
NVIDIA 3090: ./betsy: 3: ./betsy: not found
Codec: ETC2 RGB - Quality: Highest
RTX 3090: ./betsy: 3: ./betsy: not found
NVIDIA RTX 3090: ./betsy: 3: ./betsy: not found
NVIDIA 3090: ./betsy: 3: ./betsy: not found
VkResample is a Vulkan-based image upscaling library based on VkFFT. The sample input file is upscaling a 4K image to 8K using Vulkan-based GPU acceleration. Learn more via the OpenBenchmarking.org test page.
ETLegacy is an open-source engine evolution of Wolfenstein: Enemy Territory, a World War II era first person shooter that was released for free by Splash Damage using the id Tech 3 engine. Learn more via the OpenBenchmarking.org test page.
Unvanquished is a modern fork of the Tremulous first person shooter. Unvanquished is powered by the Daemon engine, a combination of the ioquake3 engine with the graphically-beautiful XreaL engine. Unvanquished supports a modern OpenGL 3 renderer and other advanced graphics features for this open-source game. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of Warsow, a popular open-source first-person shooter. This game uses the QFusion engine. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of Xonotic, which is a fork of the DarkPlaces-based Nexuiz game. Development began in March of 2010 on the Xonotic game. Learn more via the OpenBenchmarking.org test page.
OctaneBench is a test of the OctaneRender on the GPU and requires the use of NVIDIA CUDA. Learn more via the OpenBenchmarking.org test page.
This is a test of MAXON's RedShift demo build that currently requires NVIDIA GPU acceleration. Learn more via the OpenBenchmarking.org test page.
RTX 3090: The test quit with a non-zero exit status.
NVIDIA RTX 3090: The test quit with a non-zero exit status.
NVIDIA 3090: The test quit with a non-zero exit status.
This test runs ParaView benchmarks: an open-source data analytics and visualization application. Paraview describes itself as "an open-source, multi-platform data analysis and visualization application. ParaView users can quickly build visualizations to analyze their data using qualitative and quantitative techniques." Learn more via the OpenBenchmarking.org test page.
FAHBench is a Folding@Home benchmark on the GPU. Learn more via the OpenBenchmarking.org test page.
LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
ArrayFire is an GPU and CPU numeric processing library, this test uses the built-in CPU and OpenCL ArrayFire benchmarks. Learn more via the OpenBenchmarking.org test page.
LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.
Scene: DLSC - Acceleration: GPU
RTX 3090: Test failed to run.
Scene: LuxCore Benchmark - Acceleration: GPU
RTX 3090: [LuxCore][5.612] PhotonGI estimated current indirect photon error: 23.06%
FinanceBench is a collection of financial program benchmarks with support for benchmarking on the GPU via OpenCL and CPU benchmarking with OpenMP. The FinanceBench test cases are focused on Black-Sholes-Merton Process with Analytic European Option engine, QMC (Sobol) Monte-Carlo method (Equity Option Example), Bonds Fixed-rate bond with flat forward curve, and Repo Securities repurchase agreement. FinanceBench was originally written by the Cavazos Lab at University of Delaware. Learn more via the OpenBenchmarking.org test page.
ViennaCL is an open-source linear algebra library written in C++ and with support for OpenCL and OpenMP. This test profile makes use of ViennaCL's built-in benchmarks. Learn more via the OpenBenchmarking.org test page.
The GROMACS (GROningen MAchine for Chemical Simulations) molecular dynamics package testing with the water_GMX50 data. This test profile allows selecting between CPU and GPU-based GROMACS builds. Learn more via the OpenBenchmarking.org test page.
Implementation: NVIDIA CUDA GPU - Input: water_GMX50_bare
RTX 3090: ./gromacs: 5: /cuda-build/run-gromacs: not found
NVIDIA RTX 3090: ./gromacs: 5: /cuda-build/run-gromacs: not found
NVIDIA 3090: ./gromacs: 5: /cuda-build/run-gromacs: not found
This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.
Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 100
RTX 3090: @ 0x7f673b18935f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7ff1662db35f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7fa229dc935f google::LogMessageFatal::~LogMessageFatal()
Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 200
RTX 3090: @ 0x7ff7c4d3335f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7efc6619835f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7f70627d835f google::LogMessageFatal::~LogMessageFatal()
Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 1000
RTX 3090: @ 0x7f2baa38435f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7fa1401b935f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7f06ca10535f google::LogMessageFatal::~LogMessageFatal()
Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 100
RTX 3090: @ 0x7fcf7a66c35f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7fc8cad7235f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7fc82391235f google::LogMessageFatal::~LogMessageFatal()
Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 200
RTX 3090: @ 0x7f07fc1da35f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7fe536ef535f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7fcccd8ca35f google::LogMessageFatal::~LogMessageFatal()
Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 1000
RTX 3090: @ 0x7f9e6bb6a35f google::LogMessageFatal::~LogMessageFatal()
NVIDIA RTX 3090: @ 0x7f9599f2935f google::LogMessageFatal::~LogMessageFatal()
NVIDIA 3090: @ 0x7f1a673f235f google::LogMessageFatal::~LogMessageFatal()
NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.
This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.
FP16: No - Mode: Training - Network: Mobilenet - Device: OpenCL
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
FP16: No - Mode: Inference - Network: IMDB LSTM - Device: OpenCL
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
FP16: No - Mode: Inference - Network: Mobilenet - Device: OpenCL
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
FP16: Yes - Mode: Inference - Network: Mobilenet - Device: OpenCL
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
FP16: No - Mode: Inference - Network: DenseNet 201 - Device: OpenCL
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles benchmark with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported. Learn more via the OpenBenchmarking.org test page.
This is a test of Indigo Renderer's IndigoBench benchmark. Learn more via the OpenBenchmarking.org test page.
MandelGPU is an OpenCL benchmark and this test runs with the OpenCL rendering float4 kernel with a maximum of 4096 iterations. Learn more via the OpenBenchmarking.org test page.
Clpeak is designed to test the peak capabilities of OpenCL devices. Learn more via the OpenBenchmarking.org test page.
NeatBench is a benchmark of the cross-platform Neat Video software on the CPU and optional GPU (OpenCL / CUDA) support. Learn more via the OpenBenchmarking.org test page.
Acceleration: GPU
RTX 3090: Test failed to run.
NVIDIA RTX 3090: Test failed to run.
NVIDIA 3090: Test failed to run.
This is a test of Chaos Group's V-RAY benchmark. V-RAY is a commercial renderer that can integrate with various creator software products like SketchUp and 3ds Max. The V-RAY benchmark is standalone and supports CPU and NVIDIA CUDA/RTX based rendering. Learn more via the OpenBenchmarking.org test page.
Vkpeak is a Vulkan compute benchmark inspired by OpenCL's clpeak. Vkpeak provides Vulkan compute performance measurements for FP16 / FP32 / FP64 / INT16 / INT32 scalar and vec4 performance. Learn more via the OpenBenchmarking.org test page.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa201016
Graphics Notes: BAR1 / Visible vRAM Size: 32768 MiB
OpenCL Notes: GPU Compute Cores: 10496
Python Notes: Python 3.9.7
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 5 December 2021 18:19 by user pts.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa201016
Graphics Notes: BAR1 / Visible vRAM Size: 32768 MiB
OpenCL Notes: GPU Compute Cores: 10496
Python Notes: Python 3.9.7
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 5 December 2021 20:14 by user pts.
Processor: AMD Ryzen 9 5950X 16-Core @ 3.40GHz (16 Cores / 32 Threads), Motherboard: ASUS ROG CROSSHAIR VIII HERO (WI-FI) (3801 BIOS), Chipset: AMD Starship/Matisse, Memory: 32GB, Disk: 1000GB Sabrent Rocket 4.0 Plus, Graphics: NVIDIA GeForce RTX 3090 24GB, Audio: NVIDIA GA102 HD Audio, Monitor: ASUS MG28U, Network: Realtek RTL8125 2.5GbE + Intel I211 + Intel Wi-Fi 6 AX200
OS: Ubuntu 21.10, Kernel: 5.13.0-22-generic (x86_64), Desktop: GNOME Shell 40.5, Display Server: X Server 1.20.13, Display Driver: NVIDIA 495.44, OpenGL: 4.6.0, OpenCL: OpenCL 3.0 CUDA 11.5.100, Vulkan: 1.2.186, Compiler: GCC 11.2.0 + Clang 13.0.0-2, File-System: ext4, Screen Resolution: 3840x2160
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa201016
Graphics Notes: BAR1 / Visible vRAM Size: 32768 MiB
OpenCL Notes: GPU Compute Cores: 10496
Python Notes: Python 3.9.7
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 6 December 2021 04:10 by user pts.