new tests TR 3960X

AMD Ryzen Threadripper 3960X 24-Core testing with a MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS) and Sapphire AMD Radeon RX 5500/5500M / Pro 5500M 4GB on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2009194-PTS-NEWTESTS00
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Threadripper 3960X
September 19 2020
  3 Hours, 50 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


new tests TR 3960XOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper 3960X 24-Core @ 3.80GHz (24 Cores / 48 Threads)MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS)AMD Starship/Matisse32GB1000GB Sabrent Rocket 4.0 1TBSapphire AMD Radeon RX 5500/5500M / Pro 5500M 4GB (1900/875MHz)AMD Navi 10 HDMI AudioASUS MG28UAquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200Ubuntu 20.045.9.0-rc5-14sep-patch (x86_64) 20200914GNOME Shell 3.36.4X Server 1.20.8modesetting 1.20.84.6 Mesa 20.0.8 (LLVM 10.0.0)GCC 9.3.0ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen ResolutionNew Tests TR 3960X BenchmarksSystem Logs- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq ondemand - CPU Microcode: 0x8301025- Python 3.8.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected

new tests TR 3960Xincompact3d: Cylindermocassin: Dust 2D tau100.0lammps: 20k Atomslammps: Rhodopsin Proteingpaw: Carbon Nanotubemnn: SqueezeNetV1.0mnn: resnet-v2-50mnn: MobileNetV2_224mnn: mobilenet-v1-1.0mnn: inception-v3ncnn: CPU - squeezenet_int8ncnn: CPU - mobilenet_v3ncnn: CPU - squeezenetncnn: CPU - mnasnetncnn: CPU - blazefacencnn: CPU - googlenet_int8ncnn: CPU - vgg16_int8ncnn: CPU - resnet18_int8ncnn: CPU - alexnetncnn: CPU - resnet50_int8ncnn: CPU - mobilenetv2_yolov3kripke: Threadripper 3960X168.52859518517.78916.431149.8327.49628.8665.1425.63128.62714.246.767.256.522.8638.7769.5419.6211.2556.1616.9463479817OpenBenchmarking.org

Incompact3D

Incompact3d is a Fortran-MPI based, finite difference high-performance code for solving the incompressible Navier-Stokes equation and as many as you need scalar transport equations. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterIncompact3D 2020-09-17Input: CylinderThreadripper 3960X4080120160200SE +/- 1.23, N = 3168.531. (F9X) gfortran options: -cpp -funroll-loops -floop-optimize -fcray-pointer -fbacktrace -pthread -lmpi_usempif08 -lmpi_mpifh -lmpi

Monte Carlo Simulations of Ionised Nebulae

Mocassin is the Monte Carlo Simulations of Ionised Nebulae. MOCASSIN is a fully 3D or 2D photoionisation and dust radiative transfer code which employs a Monte Carlo approach to the transfer of radiation through media of arbitrary geometry and density distribution. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMonte Carlo Simulations of Ionised Nebulae 2019-03-24Input: Dust 2D tau100.0Threadripper 3960X40801201602001851. (F9X) gfortran options: -cpp -Jsource/ -ffree-line-length-0 -lm -std=legacy -O3 -O2 -pthread -lmpi_usempif08 -lmpi_mpifh -lmpi

LAMMPS Molecular Dynamics Simulator

LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgns/day, More Is BetterLAMMPS Molecular Dynamics Simulator 24Aug2020Model: 20k AtomsThreadripper 3960X48121620SE +/- 0.01, N = 317.791. (CXX) g++ options: -O3 -pthread -lm

OpenBenchmarking.orgns/day, More Is BetterLAMMPS Molecular Dynamics Simulator 24Aug2020Model: Rhodopsin ProteinThreadripper 3960X48121620SE +/- 0.24, N = 1516.431. (CXX) g++ options: -O3 -pthread -lm

GPAW

GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterGPAW 20.1Input: Carbon NanotubeThreadripper 3960X306090120150SE +/- 0.08, N = 3149.831. (CC) gcc options: -pthread -shared -fwrapv -O2 -lxc -lblas -lmpi

Mobile Neural Network

MNN is the Mobile Neural Network as a highly efficient, lightweight deep learning framework developed by ALibaba. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2020-09-17Model: SqueezeNetV1.0Threadripper 3960X246810SE +/- 0.092, N = 157.496MIN: 6.92 / MAX: 8.571. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2020-09-17Model: resnet-v2-50Threadripper 3960X714212835SE +/- 0.31, N = 1528.87MIN: 24.98 / MAX: 32.761. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2020-09-17Model: MobileNetV2_224Threadripper 3960X1.1572.3143.4714.6285.785SE +/- 0.052, N = 155.142MIN: 4.82 / MAX: 5.771. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2020-09-17Model: mobilenet-v1-1.0Threadripper 3960X1.2672.5343.8015.0686.335SE +/- 0.157, N = 155.631MIN: 4.53 / MAX: 6.261. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2020-09-17Model: inception-v3Threadripper 3960X714212835SE +/- 0.10, N = 1528.63MIN: 25.69 / MAX: 32.21. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

NCNN

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: squeezenet_int8Threadripper 3960X48121620SE +/- 0.01, N = 314.24MIN: 14.06 / MAX: 15.721. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: mobilenet_v3Threadripper 3960X246810SE +/- 0.01, N = 36.76MIN: 6.6 / MAX: 7.841. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: squeezenetThreadripper 3960X246810SE +/- 0.04, N = 37.25MIN: 6.98 / MAX: 20.161. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: mnasnetThreadripper 3960X246810SE +/- 0.01, N = 36.52MIN: 6.37 / MAX: 7.071. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: blazefaceThreadripper 3960X0.64351.2871.93052.5743.2175SE +/- 0.00, N = 32.86MIN: 2.74 / MAX: 3.221. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: googlenet_int8Threadripper 3960X918273645SE +/- 0.08, N = 338.77MIN: 37.84 / MAX: 43.531. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: vgg16_int8Threadripper 3960X1530456075SE +/- 0.14, N = 369.54MIN: 67.95 / MAX: 1281. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: resnet18_int8Threadripper 3960X510152025SE +/- 0.02, N = 319.62MIN: 19.37 / MAX: 23.511. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: alexnetThreadripper 3960X3691215SE +/- 0.03, N = 311.25MIN: 11.11 / MAX: 15.681. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: resnet50_int8Threadripper 3960X1326395265SE +/- 0.96, N = 356.16MIN: 53.75 / MAX: 142.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20200916Target: CPU - Model: mobilenetv2_yolov3Threadripper 3960X48121620SE +/- 0.18, N = 316.94MIN: 16.44 / MAX: 22.991. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

Kripke

Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary purpose is to research how data layout, programming paradigms and architectures effect the implementation and performance of Sn transport. Kripke is developed by LLNL. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgThroughput FoM, More Is BetterKripke 1.2.4Threadripper 3960X14M28M42M56M70MSE +/- 894428.40, N = 3634798171. (CXX) g++ options: -O3 -fopenmp