ubu20-wk1-ML-05sep2020 VMware testing on Ubuntu 20.04 via the Phoronix Test Suite.
Compare your own system(s) to this result file with the
Phoronix Test Suite by running the command:
phoronix-test-suite benchmark 2009061-NE-UBU20WK1M26 ubu20-wk1-ML-05sep2020 Processor: 16 x AMD Ryzen Threadripper 3960X 24-Core (31 Cores), Motherboard: Intel 440BX (6.00 BIOS), Chipset: Intel 440BX/ZX/DX, Memory: 16GB, Disk: 193GB VMware Virtual S, Graphics: SVGA3D; build: RELEASE; LLVM;, Audio: Ensoniq ES1371/ES1373, Network: Intel 82545EM + 4 x AMD 79c970
OS: Ubuntu 20.04, Kernel: 5.4.0-45-generic (x86_64), Desktop: GNOME Shell 3.36.4, Display Server: X Server 1.20.8, Display Driver: modesetting 1.20.8, OpenGL: 2.1 Mesa 20.0.8, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1680x968, System Layer: VMware
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: CPU Microcode: 0x8301039Graphics Notes: Gallium3D XAPython Notes: Python 3.8.2Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected
ubu20-wk1-ML-05sep2020 OpenBenchmarking.org Phoronix Test Suite 16 x AMD Ryzen Threadripper 3960X 24-Core (31 Cores) Intel 440BX (6.00 BIOS) Intel 440BX/ZX/DX 16GB 193GB VMware Virtual S SVGA3D; build Ensoniq ES1371/ES1373 Intel 82545EM + 4 x AMD 79c970 Ubuntu 20.04 5.4.0-45-generic (x86_64) GNOME Shell 3.36.4 X Server 1.20.8 modesetting 1.20.8 2.1 Mesa 20.0.8 GCC 9.3.0 ext4 1680x968 VMware Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server Display Driver OpenGL Compiler File-System Screen Resolution System Layer Ubu20-wk1-ML-05sep2020 Benchmarks System Logs - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - CPU Microcode: 0x8301039 - Gallium3D XA - Python 3.8.2 - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected
ubu20-wk1-ML-05sep2020 scikit-learn: mlpack: scikit_linearridgeregression mlpack: scikit_svm mlpack: scikit_qda mlpack: scikit_ica numenta-nab: Bayesian Changepoint numenta-nab: Earthgecko Skyline numenta-nab: Windowed Gaussian numenta-nab: Relative Entropy plaidml: No - Inference - ResNet 50 - CPU plaidml: No - Inference - VGG16 - CPU tensorflow-lite: Inception ResNet V2 tensorflow-lite: Mobilenet Quant tensorflow-lite: Mobilenet Float tensorflow-lite: NASNet Mobile tensorflow-lite: Inception V4 tensorflow-lite: SqueezeNet deepspeech: numpy: onednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU onednn: Recurrent Neural Network Inference - f32 - CPU onednn: Deconvolution Batch deconv_3d - u8s8f32 - CPU numenta-nab: EXPoSE onednn: Matrix Multiply Batch Shapes Transformer - f32 - CPU onednn: Recurrent Neural Network Training - f32 - CPU onednn: Deconvolution Batch deconv_1d - u8s8f32 - CPU onednn: Convolution Batch Shapes Auto - u8s8f32 - CPU onednn: Deconvolution Batch deconv_3d - f32 - CPU onednn: Deconvolution Batch deconv_1d - f32 - CPU onednn: Convolution Batch Shapes Auto - f32 - CPU onednn: IP Batch All - u8s8f32 - CPU onednn: IP Batch 1D - u8s8f32 - CPU onednn: IP Batch All - f32 - CPU onednn: IP Batch 1D - f32 - CPU ubu20-wk1-ML-05sep2020 9.024 2.71 21.29 60.99 54.84 29.968 97.088 9.223 16.980 6.10 16.65 1909437 112000 105987 161302 2127763 155523 60.79795 345.45 2.90286 97.9147 6.16964 800.854 1.84022 381.475 7.91315 16.5838 9.92993 6.02825 15.7514 43.8748 3.80789 78.4388 6.68402 OpenBenchmarking.org
Numenta Anomaly Benchmark Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial timeseries data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Bayesian Changepoint ubu20-wk1-ML-05sep2020 7 14 21 28 35 SE +/- 0.28, N = 3 29.97
OpenBenchmarking.org FPS, More Is Better PlaidML FP16: No - Mode: Inference - Network: VGG16 - Device: CPU ubu20-wk1-ML-05sep2020 4 8 12 16 20 SE +/- 0.08, N = 3 16.65
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the oneAPI initiative. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 0.6531 1.3062 1.9593 2.6124 3.2655 SE +/- 0.03513, N = 3 2.90286 MIN: 2.43 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 20 40 60 80 100 SE +/- 0.31, N = 3 97.91 MIN: 77.57 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 2 4 6 8 10 SE +/- 0.05780, N = 3 6.16964 MIN: 3.37 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
Numenta Anomaly Benchmark Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial timeseries data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: EXPoSE ubu20-wk1-ML-05sep2020 200 400 600 800 1000 SE +/- 23.61, N = 9 800.85
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the oneAPI initiative. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 0.414 0.828 1.242 1.656 2.07 SE +/- 0.07927, N = 12 1.84022 MIN: 1.14 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 80 160 240 320 400 SE +/- 7.75, N = 15 381.48 MIN: 289.36 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 2 4 6 8 10 SE +/- 0.18171, N = 15 7.91315 MIN: 4.83 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 4 8 12 16 20 SE +/- 0.33, N = 15 16.58 MIN: 10.6 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 3 6 9 12 15 SE +/- 0.41189, N = 15 9.92993 MIN: 4.48 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 2 4 6 8 10 SE +/- 0.25985, N = 12 6.02825 MIN: 2.79 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 4 8 12 16 20 SE +/- 0.34, N = 15 15.75 MIN: 10.34 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch All - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 10 20 30 40 50 SE +/- 0.86, N = 15 43.87 MIN: 26.19 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch 1D - Data Type: u8s8f32 - Engine: CPU ubu20-wk1-ML-05sep2020 0.8568 1.7136 2.5704 3.4272 4.284 SE +/- 0.09458, N = 15 3.80789 MIN: 1.68 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch All - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 20 40 60 80 100 SE +/- 1.53, N = 12 78.44 MIN: 54.01 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch 1D - Data Type: f32 - Engine: CPU ubu20-wk1-ML-05sep2020 2 4 6 8 10 SE +/- 0.31662, N = 15 6.68402 MIN: 3.4 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
ubu20-wk1-ML-05sep2020 Processor: 16 x AMD Ryzen Threadripper 3960X 24-Core (31 Cores), Motherboard: Intel 440BX (6.00 BIOS), Chipset: Intel 440BX/ZX/DX, Memory: 16GB, Disk: 193GB VMware Virtual S, Graphics: SVGA3D; build: RELEASE; LLVM;, Audio: Ensoniq ES1371/ES1373, Network: Intel 82545EM + 4 x AMD 79c970
OS: Ubuntu 20.04, Kernel: 5.4.0-45-generic (x86_64), Desktop: GNOME Shell 3.36.4, Display Server: X Server 1.20.8, Display Driver: modesetting 1.20.8, OpenGL: 2.1 Mesa 20.0.8, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1680x968, System Layer: VMware
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: CPU Microcode: 0x8301039Graphics Notes: Gallium3D XAPython Notes: Python 3.8.2Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 6 September 2020 10:10 by user sping.