ubu20-wk1-ML-05sep2020

VMware testing on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2009061-NE-UBU20WK1M26
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
ubu20-wk1-ML-05sep2020
September 06 2020
  4 Hours, 27 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


ubu20-wk1-ML-05sep2020OpenBenchmarking.orgPhoronix Test Suite16 x AMD Ryzen Threadripper 3960X 24-Core (31 Cores)Intel 440BX (6.00 BIOS)Intel 440BX/ZX/DX16GB193GB VMware Virtual SSVGA3D; buildEnsoniq ES1371/ES1373Intel 82545EM + 4 x AMD 79c970Ubuntu 20.045.4.0-45-generic (x86_64)GNOME Shell 3.36.4X Server 1.20.8modesetting 1.20.82.1 Mesa 20.0.8GCC 9.3.0ext41680x968VMwareProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen ResolutionSystem LayerUbu20-wk1-ML-05sep2020 BenchmarksSystem Logs- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - CPU Microcode: 0x8301039- Gallium3D XA- Python 3.8.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected

ubu20-wk1-ML-05sep2020onednn: IP Batch 1D - f32 - CPUonednn: IP Batch All - f32 - CPUonednn: IP Batch 1D - u8s8f32 - CPUonednn: IP Batch All - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Deconvolution Batch deconv_1d - f32 - CPUonednn: Deconvolution Batch deconv_3d - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch deconv_1d - u8s8f32 - CPUonednn: Deconvolution Batch deconv_3d - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPUnumpy: deepspeech: tensorflow-lite: SqueezeNettensorflow-lite: Inception V4tensorflow-lite: NASNet Mobiletensorflow-lite: Mobilenet Floattensorflow-lite: Mobilenet Quanttensorflow-lite: Inception ResNet V2plaidml: No - Inference - VGG16 - CPUplaidml: No - Inference - ResNet 50 - CPUnumenta-nab: EXPoSEnumenta-nab: Relative Entropynumenta-nab: Windowed Gaussiannumenta-nab: Earthgecko Skylinenumenta-nab: Bayesian Changepointmlpack: scikit_icamlpack: scikit_qdamlpack: scikit_svmmlpack: scikit_linearridgeregressionscikit-learn: ubu20-wk1-ML-05sep20206.6840278.43883.8078943.874815.75146.028259.9299316.58387.913156.16964381.47597.91471.840222.90286345.4560.797951555232127763161302105987112000190943716.656.10800.85416.9809.22397.08829.96854.8460.9921.292.719.024OpenBenchmarking.org

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the oneAPI initiative. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: IP Batch 1D - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep2020246810SE +/- 0.31662, N = 156.68402MIN: 3.41. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: IP Batch All - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep202020406080100SE +/- 1.53, N = 1278.44MIN: 54.011. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: IP Batch 1D - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep20200.85681.71362.57043.42724.284SE +/- 0.09458, N = 153.80789MIN: 1.681. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: IP Batch All - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep20201020304050SE +/- 0.86, N = 1543.87MIN: 26.191. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep202048121620SE +/- 0.34, N = 1515.75MIN: 10.341. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Deconvolution Batch deconv_1d - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep2020246810SE +/- 0.25985, N = 126.02825MIN: 2.791. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Deconvolution Batch deconv_3d - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep20203691215SE +/- 0.41189, N = 159.92993MIN: 4.481. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep202048121620SE +/- 0.33, N = 1516.58MIN: 10.61. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep2020246810SE +/- 0.18171, N = 157.91315MIN: 4.831. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep2020246810SE +/- 0.05780, N = 36.16964MIN: 3.371. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep202080160240320400SE +/- 7.75, N = 15381.48MIN: 289.361. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep202020406080100SE +/- 0.31, N = 397.91MIN: 77.571. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUubu20-wk1-ML-05sep20200.4140.8281.2421.6562.07SE +/- 0.07927, N = 121.84022MIN: 1.141. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 1.5Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPUubu20-wk1-ML-05sep20200.65311.30621.95932.61243.2655SE +/- 0.03513, N = 32.90286MIN: 2.431. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy Benchmarkubu20-wk1-ML-05sep202080160240320400SE +/- 1.82, N = 3345.45

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6ubu20-wk1-ML-05sep20201428425670SE +/- 0.29, N = 360.80

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: SqueezeNetubu20-wk1-ML-05sep202030K60K90K120K150KSE +/- 1248.21, N = 3155523

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Inception V4ubu20-wk1-ML-05sep2020500K1000K1500K2000K2500KSE +/- 15033.65, N = 32127763

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: NASNet Mobileubu20-wk1-ML-05sep202030K60K90K120K150KSE +/- 356.93, N = 3161302

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Mobilenet Floatubu20-wk1-ML-05sep202020K40K60K80K100KSE +/- 73.39, N = 3105987

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Mobilenet Quantubu20-wk1-ML-05sep202020K40K60K80K100KSE +/- 217.73, N = 3112000

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2020-08-23Model: Inception ResNet V2ubu20-wk1-ML-05sep2020400K800K1200K1600K2000KSE +/- 7346.01, N = 31909437

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUubu20-wk1-ML-05sep202048121620SE +/- 0.08, N = 316.65

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUubu20-wk1-ML-05sep2020246810SE +/- 0.03, N = 36.10

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial timeseries data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: EXPoSEubu20-wk1-ML-05sep20202004006008001000SE +/- 23.61, N = 9800.85

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative Entropyubu20-wk1-ML-05sep202048121620SE +/- 0.23, N = 316.98

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed Gaussianubu20-wk1-ML-05sep20203691215SE +/- 0.063, N = 39.223

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko Skylineubu20-wk1-ML-05sep202020406080100SE +/- 0.99, N = 397.09

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian Changepointubu20-wk1-ML-05sep2020714212835SE +/- 0.28, N = 329.97

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaubu20-wk1-ML-05sep20201224364860SE +/- 0.09, N = 354.84

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdaubu20-wk1-ML-05sep20201428425670SE +/- 0.31, N = 360.99

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmubu20-wk1-ML-05sep2020510152025SE +/- 0.04, N = 321.29

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionubu20-wk1-ML-05sep20200.60981.21961.82942.43923.049SE +/- 0.02, N = 32.71

Scikit-Learn

Scikit-learn is a Python module for machine learning Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 0.22.1ubu20-wk1-ML-05sep20203691215SE +/- 0.027, N = 39.024