hurricane-server

AMD Eng Sample 100-000000897-03 testing with a Supermicro Super Server H13SSL-N v2.00 (3.0 BIOS) and llvmpipe on Ubuntu 24.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2412185-NE-HURRICANE76
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
hurricane-server
December 14
  4 Days, 10 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


hurricane-serverOpenBenchmarking.orgPhoronix Test SuiteAMD Eng Sample 100-000000897-03 @ 2.55GHz (32 Cores / 64 Threads)Supermicro Super Server H13SSL-N v2.00 (3.0 BIOS)AMD Device 14a432 GB + 32 GB + 32 GB + 16 GB + 16 GB + 16 GB + 32 GB + 32 GB + 32 GB + 16 GB + 16 GB + 16 GB DDR5-4800MT/s512GB INTEL SSDPEKKF512G8Lllvmpipe (405/715MHz)2 x Broadcom NetXtreme BCM5720 PCIeUbuntu 24.046.8.0-50-generic (x86_64)GNOME Shell 46.0X Server 1.21.1.11NVIDIA 535.183.014.5 Mesa 24.0.9-0ubuntu0.3 (LLVM 17.0.6 256 bits)OpenCL 3.0 CUDA 12.2.148GCC 13.3.0ext41024x768ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLOpenCLCompilerFile-SystemScreen ResolutionHurricane-server BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-fG75Ri/gcc-13-13.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-fG75Ri/gcc-13-13.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa101020- BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 86.00.4d.00.01- GPU Compute Cores: 3584- Python 3.12.3- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Vulnerable: Safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected

hurricane-servertensorflow: GPU - 512 - VGG-16tensorflow: GPU - 256 - VGG-16tensorflow: GPU - 512 - ResNet-50scikit-learn: Isotonic / Pathologicaltensorflow: GPU - 256 - ResNet-50tensorflow: GPU - 64 - VGG-16scikit-learn: Isotonic / Perturbed Logarithmtensorflow: GPU - 512 - GoogLeNetscikit-learn: Isotonic / Logistictensorflow: GPU - 32 - VGG-16tensorflow: CPU - 512 - VGG-16tensorflow: GPU - 512 - AlexNetscikit-learn: SAGAtensorflow: GPU - 256 - GoogLeNettensorflow: GPU - 64 - ResNet-50tensorflow: GPU - 16 - VGG-16scikit-learn: Sparse Rand Projections / 100 Iterationstensorflow: CPU - 256 - VGG-16tensorflow: GPU - 256 - AlexNetscikit-learn: Lassowhisper-cpp: ggml-medium.en - 2016 State of the Unionscikit-learn: Covertype Dataset Benchmarktensorflow: CPU - 512 - ResNet-50tensorflow: GPU - 32 - ResNet-50scikit-learn: SGDOneClassSVMscikit-learn: Treelczero: BLASscikit-learn: TSNE MNIST Datasetscikit-learn: Hist Gradient Boosting Higgs Bosontensorflow: GPU - 64 - GoogLeNetscikit-learn: Isolation Forestscikit-learn: Hist Gradient Boostingscikit-learn: Hist Gradient Boosting Adultwhisperfile: Mediumpytorch: CPU - 32 - Efficientnet_v2_ltensorflow: CPU - 256 - ResNet-50tensorflow: GPU - 16 - ResNet-50scikit-learn: GLMscikit-learn: Plot Hierarchicallitert: Mobilenet Quantwhisper-cpp: ggml-small.en - 2016 State of the Unionscikit-learn: Plot Neighborspytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_ltensorflow: CPU - 64 - VGG-16tensorflow: GPU - 64 - AlexNetscikit-learn: Sparsifytensorflow: CPU - 512 - GoogLeNetscikit-learn: Sample Without Replacementxnnpack: QS8MobileNetV2xnnpack: FP16MobileNetV3Smallxnnpack: FP16MobileNetV3Largexnnpack: FP16MobileNetV2xnnpack: FP16MobileNetV1xnnpack: FP32MobileNetV3Smallxnnpack: FP32MobileNetV3Largexnnpack: FP32MobileNetV2xnnpack: FP32MobileNetV1tensorflow: GPU - 32 - GoogLeNetscikit-learn: Plot Polynomial Kernel Approximationscikit-learn: Feature Expansionsopencv: DNN - Deep Neural Networkscikit-learn: Plot Parallel Pairwisenumpy: whisperfile: Smallscikit-learn: SGD Regressionwhisper-cpp: ggml-base.en - 2016 State of the Uniontensorflow: CPU - 32 - VGG-16tensorflow: GPU - 32 - AlexNetscikit-learn: MNIST Datasetncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPUv2-yolov3v2-yolov3 - mobilenetv2-yolov3ncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPUv2-yolov3v2-yolov3 - mobilenetv2-yolov3ncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetpytorch: CPU - 256 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 16 - ResNet-152pytorch: CPU - 64 - ResNet-152tensorflow: CPU - 256 - GoogLeNetscikit-learn: Text Vectorizerspytorch: CPU - 1 - Efficientnet_v2_lscikit-learn: Kernel PCA Solvers / Time vs. N Samplestensorflow: GPU - 16 - GoogLeNetscikit-learn: Hist Gradient Boosting Threadingtensorflow: CPU - 512 - AlexNettensorflow: CPU - 64 - ResNet-50shoc: OpenCL - Max SP Flopstensorflow-lite: Mobilenet Quantonednn: Recurrent Neural Network Training - CPUscikit-learn: Plot Wardonednn: Recurrent Neural Network Inference - CPUtensorflow: GPU - 1 - VGG-16scikit-learn: Plot Incremental PCAtensorflow: CPU - 16 - VGG-16openvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUscikit-learn: Plot OMP vs. LARStensorflow: GPU - 16 - AlexNetopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUtensorflow-lite: Inception V4tensorflow-lite: Inception ResNet V2tensorflow-lite: NASNet Mobileopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUtensorflow-lite: Mobilenet Floatopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUtensorflow-lite: SqueezeNetopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUscikit-learn: Hist Gradient Boosting Categorical Onlyscikit-learn: Kernel PCA Solvers / Time vs. N Componentslitert: Inception V4litert: Inception ResNet V2litert: NASNet Mobilelitert: DeepLab V3litert: Mobilenet Floatlitert: SqueezeNetlitert: Quantized COCO SSD MobileNet v1pytorch: CPU - 1 - ResNet-152whisperfile: Tinytensorflow: CPU - 32 - ResNet-50tensorflow: CPU - 256 - AlexNetopenvino-genai: Gemma-7b-int4-ov - CPU - Time Per Output Tokenopenvino-genai: Gemma-7b-int4-ov - CPU - Time To First Tokenopenvino-genai: Gemma-7b-int4-ov - CPUdeepspeech: CPUpytorch: CPU - 512 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 32 - ResNet-50scikit-learn: LocalOutlierFactoropenvino-genai: Falcon-7b-instruct-int4-ov - CPU - Time Per Output Tokenopenvino-genai: Falcon-7b-instruct-int4-ov - CPU - Time To First Tokenopenvino-genai: Falcon-7b-instruct-int4-ov - CPUtensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 16 - ResNet-50tensorflow: GPU - 1 - ResNet-50onednn: Deconvolution Batch shapes_1d - CPUrbenchmark: scikit-learn: 20 Newsgroups / Logistic Regressionpytorch: CPU - 1 - ResNet-50tensorflow: CPU - 32 - GoogLeNetopenvino-genai: TinyLlama-1.1B-Chat-v1.0 - CPU - Time Per Output Tokenopenvino-genai: TinyLlama-1.1B-Chat-v1.0 - CPU - Time To First Tokenopenvino-genai: TinyLlama-1.1B-Chat-v1.0 - CPUshoc: OpenCL - Texture Read Bandwidthopenvino-genai: Phi-3-mini-128k-instruct-int4-ov - CPU - Time Per Output Tokenopenvino-genai: Phi-3-mini-128k-instruct-int4-ov - CPU - Time To First Tokenopenvino-genai: Phi-3-mini-128k-instruct-int4-ov - CPUtensorflow: CPU - 64 - AlexNetonednn: IP Shapes 1D - CPUtensorflow: CPU - 16 - GoogLeNetrnnoise: 26 Minute Long Talking Sampletensorflow: GPU - 1 - GoogLeNettensorflow: CPU - 1 - VGG-16tensorflow: CPU - 1 - ResNet-50tensorflow: GPU - 1 - AlexNettensorflow: CPU - 32 - AlexNetonednn: IP Shapes 3D - CPUtensorflow: CPU - 16 - AlexNetshoc: OpenCL - FFT SPonednn: Convolution Batch Shapes Auto - CPUtensorflow: CPU - 1 - GoogLeNettensorflow: CPU - 1 - AlexNetonednn: Deconvolution Batch shapes_3d - CPUshoc: OpenCL - Bus Speed Readbackshoc: OpenCL - GEMM SGEMM_Nshoc: OpenCL - Triadshoc: OpenCL - Reductionshoc: OpenCL - Bus Speed Downloadshoc: OpenCL - MD5 Hashshoc: OpenCL - S3Ddeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamhurricane-server1.791.796.834978.9926.841.782180.91721.101974.7971.7733.7134.131027.76821.066.781.76659.72933.5233.97536.893605.21554434.505101.606.73330.20568.790281268.06277.70720.83236.890247.454245.146312.217198.1098.536.60200.421197.9481404.29243.05902174.5008.208.168.218.2132.6533.24156.750288.79135.81320012136301219851348216431362162130620.37129.017126.77633303123.031513.75137.6484387.926116.8632531.7632.1278.40011.5767.7124.0816.9227.0115.9814.465.528.9925.1717.413.819.716.899.497.957.4315.9811.1867.8724.0616.8526.5815.8114.465.519.0125.2317.393.809.736.919.517.937.4115.8119.4819.5119.5019.5519.69283.2865.34612.4768.49420.1568.022679.6390.029437.512531.33811.25357.026450.8581.6136.50229.28790.6220.16412.4038.6746.71730.0668.60233.0411.902638.3383.08192.3082.70193.197.312176.4619.12834.815.822734.7520.28786.8316113.831730.624134.54.596872.551306.870.4164559.582015.746.722367.680.5847505.8427.521160.6029.251092.3910.371536.1616.081984.683.294791.908.293835.5544.82140.06216671.719022.731332.43250.311332.512102.342299.8124.6948.3175584.65651.7233.2172.7230.1153.3746452.0951.3952.1252.1052.1225.66125.4059.0639.37262.3174.574.725.684710.170712.94167.94241.1615.2118.2465.76588.11321.2041.4147.17532.950.850385214.2111.35514.6515.0417.3215.94465.660.680494376.931479.171.1479053.6258.021.8155713.54335521.3512.8950257.88713.213814.4889268.847OpenBenchmarking.org

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 512 - Model: VGG-16hurricane-server0.40280.80561.20841.61122.014SE +/- 0.00, N = 31.79

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 256 - Model: VGG-16hurricane-server0.40280.80561.20841.61122.014SE +/- 0.00, N = 31.79

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 512 - Model: ResNet-50hurricane-server246810SE +/- 0.00, N = 36.83

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Pathologicalhurricane-server11002200330044005500SE +/- 1.30, N = 34978.991. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 256 - Model: ResNet-50hurricane-server246810SE +/- 0.00, N = 36.84

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 64 - Model: VGG-16hurricane-server0.40050.8011.20151.6022.0025SE +/- 0.00, N = 31.78

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Perturbed Logarithmhurricane-server5001000150020002500SE +/- 1.48, N = 32180.921. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 512 - Model: GoogLeNethurricane-server510152025SE +/- 0.01, N = 321.10

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Logistichurricane-server400800120016002000SE +/- 0.59, N = 31974.801. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 32 - Model: VGG-16hurricane-server0.39830.79661.19491.59321.9915SE +/- 0.00, N = 31.77

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: VGG-16hurricane-server816243240SE +/- 0.01, N = 333.71

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 512 - Model: AlexNethurricane-server816243240SE +/- 0.00, N = 334.13

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAhurricane-server2004006008001000SE +/- 0.84, N = 31027.771. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 256 - Model: GoogLeNethurricane-server510152025SE +/- 0.02, N = 321.06

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 64 - Model: ResNet-50hurricane-server246810SE +/- 0.01, N = 36.78

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 16 - Model: VGG-16hurricane-server0.3960.7921.1881.5841.98SE +/- 0.00, N = 31.76

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 Iterationshurricane-server140280420560700SE +/- 1.78, N = 3659.731. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: VGG-16hurricane-server816243240SE +/- 0.01, N = 333.52

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 256 - Model: AlexNethurricane-server816243240SE +/- 0.00, N = 333.97

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Lassohurricane-server120240360480600SE +/- 2.40, N = 3536.891. (F9X) gfortran options: -O0

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-medium.en - Input: 2016 State of the Unionhurricane-server130260390520650SE +/- 5.80, N = 3605.221. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset Benchmarkhurricane-server90180270360450SE +/- 0.10, N = 3434.511. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: ResNet-50hurricane-server20406080100SE +/- 0.05, N = 3101.60

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 32 - Model: ResNet-50hurricane-server246810SE +/- 0.00, N = 36.73

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGDOneClassSVMhurricane-server70140210280350SE +/- 0.43, N = 3330.211. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Treehurricane-server1530456075SE +/- 0.69, N = 1568.791. (F9X) gfortran options: -O0

LeelaChessZero

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.31.1Backend: BLAShurricane-server60120180240300SE +/- 2.91, N = 32811. (CXX) g++ options: -flto -pthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST Datasethurricane-server60120180240300SE +/- 0.45, N = 3268.061. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs Bosonhurricane-server20406080100SE +/- 0.88, N = 377.711. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 64 - Model: GoogLeNethurricane-server510152025SE +/- 0.00, N = 320.83

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isolation Foresthurricane-server50100150200250SE +/- 0.22, N = 3236.891. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boostinghurricane-server50100150200250SE +/- 0.79, N = 3247.451. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Adulthurricane-server50100150200250SE +/- 0.15, N = 3245.151. (F9X) gfortran options: -O0

Whisperfile

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisperfile 20Aug24Model Size: Mediumhurricane-server70140210280350SE +/- 1.81, N = 3312.22

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lhurricane-server246810SE +/- 0.09, N = 48.10MIN: 2.17 / MAX: 8.79

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: ResNet-50hurricane-server20406080100SE +/- 0.05, N = 398.53

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 16 - Model: ResNet-50hurricane-server246810SE +/- 0.01, N = 36.60

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMhurricane-server4080120160200SE +/- 0.25, N = 3200.421. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Hierarchicalhurricane-server4080120160200SE +/- 0.23, N = 3197.951. (F9X) gfortran options: -O0

LiteRT

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: Mobilenet Quanthurricane-server30060090012001500SE +/- 16.18, N = 151404.29

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-small.en - Input: 2016 State of the Unionhurricane-server50100150200250SE +/- 0.71, N = 3243.061. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Neighborshurricane-server4080120160200SE +/- 0.73, N = 3174.501. (F9X) gfortran options: -O0

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lhurricane-server246810SE +/- 0.01, N = 38.20MIN: 7.01 / MAX: 8.8

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lhurricane-server246810SE +/- 0.01, N = 38.16MIN: 3.8 / MAX: 8.81

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lhurricane-server246810SE +/- 0.03, N = 38.21MIN: 5.85 / MAX: 8.81

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lhurricane-server246810SE +/- 0.04, N = 38.21MIN: 7 / MAX: 8.84

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: VGG-16hurricane-server816243240SE +/- 0.01, N = 332.65

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 64 - Model: AlexNethurricane-server816243240SE +/- 0.01, N = 333.24

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparsifyhurricane-server306090120150SE +/- 0.28, N = 3156.751. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: GoogLeNethurricane-server60120180240300SE +/- 0.32, N = 3288.79

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without Replacementhurricane-server306090120150SE +/- 0.09, N = 3135.811. (F9X) gfortran options: -O0

XNNPACK

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: QS8MobileNetV2hurricane-server400800120016002000SE +/- 5.33, N = 320011. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP16MobileNetV3Smallhurricane-server5001000150020002500SE +/- 4.84, N = 321361. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP16MobileNetV3Largehurricane-server6001200180024003000SE +/- 9.07, N = 330121. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP16MobileNetV2hurricane-server400800120016002000SE +/- 2.91, N = 319851. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP16MobileNetV1hurricane-server30060090012001500SE +/- 3.06, N = 313481. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP32MobileNetV3Smallhurricane-server5001000150020002500SE +/- 5.46, N = 321641. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP32MobileNetV3Largehurricane-server7001400210028003500SE +/- 11.68, N = 331361. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP32MobileNetV2hurricane-server5001000150020002500SE +/- 7.51, N = 321621. (CXX) g++ options: -O3 -lrt -lm

OpenBenchmarking.orgus, Fewer Is BetterXNNPACK b7b048Model: FP32MobileNetV1hurricane-server30060090012001500SE +/- 2.33, N = 313061. (CXX) g++ options: -O3 -lrt -lm

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 32 - Model: GoogLeNethurricane-server510152025SE +/- 0.20, N = 320.37

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel Approximationhurricane-server306090120150SE +/- 0.10, N = 3129.021. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature Expansionshurricane-server306090120150SE +/- 0.31, N = 3126.781. (F9X) gfortran options: -O0

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural Networkhurricane-server7K14K21K28K35KSE +/- 601.47, N = 15333031. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Parallel Pairwisehurricane-server306090120150SE +/- 0.39, N = 3123.031. (F9X) gfortran options: -O0

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy Benchmarkhurricane-server110220330440550SE +/- 1.66, N = 3513.75

Whisperfile

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisperfile 20Aug24Model Size: Smallhurricane-server306090120150SE +/- 0.47, N = 3137.65

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD Regressionhurricane-server20406080100SE +/- 0.12, N = 387.931. (F9X) gfortran options: -O0

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-base.en - Input: 2016 State of the Unionhurricane-server306090120150SE +/- 0.28, N = 3116.861. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: VGG-16hurricane-server714212835SE +/- 0.04, N = 331.76

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 32 - Model: AlexNethurricane-server714212835SE +/- 0.00, N = 332.12

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST Datasethurricane-server20406080100SE +/- 0.03, N = 378.401. (F9X) gfortran options: -O0

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDethurricane-server3691215SE +/- 0.42, N = 311.57MIN: 10.54 / MAX: 16.031. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerhurricane-server1530456075SE +/- 1.75, N = 367.71MIN: 45.61 / MAX: 933.741. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mhurricane-server612182430SE +/- 0.02, N = 324.08MIN: 23.85 / MAX: 28.531. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdhurricane-server48121620SE +/- 0.02, N = 316.92MIN: 16.68 / MAX: 29.481. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyhurricane-server612182430SE +/- 0.05, N = 327.01MIN: 25.85 / MAX: 31.621. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3hurricane-server48121620SE +/- 0.02, N = 315.98MIN: 15.78 / MAX: 20.11. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50hurricane-server48121620SE +/- 0.11, N = 314.46MIN: 14.13 / MAX: 18.671. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnethurricane-server1.2422.4843.7264.9686.21SE +/- 0.00, N = 35.52MIN: 5.39 / MAX: 9.561. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18hurricane-server3691215SE +/- 0.04, N = 38.99MIN: 8.82 / MAX: 13.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16hurricane-server612182430SE +/- 0.25, N = 325.17MIN: 23.53 / MAX: 34.681. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenethurricane-server48121620SE +/- 0.04, N = 317.41MIN: 17.2 / MAX: 22.81. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefacehurricane-server0.85731.71462.57193.42924.2865SE +/- 0.00, N = 33.81MIN: 3.74 / MAX: 7.851. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0hurricane-server3691215SE +/- 0.02, N = 39.71MIN: 9.4 / MAX: 13.081. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnethurricane-server246810SE +/- 0.01, N = 36.89MIN: 6.67 / MAX: 7.751. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2hurricane-server3691215SE +/- 0.01, N = 39.49MIN: 9.27 / MAX: 14.871. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3hurricane-server246810SE +/- 0.02, N = 37.95MIN: 7.73 / MAX: 15.081. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2hurricane-server246810SE +/- 0.03, N = 37.43MIN: 7.08 / MAX: 11.161. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenethurricane-server48121620SE +/- 0.02, N = 315.98MIN: 15.78 / MAX: 20.11. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDethurricane-server3691215SE +/- 0.44, N = 311.18MIN: 10.06 / MAX: 21.071. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerhurricane-server1530456075SE +/- 2.57, N = 367.87MIN: 44.97 / MAX: 7581. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mhurricane-server612182430SE +/- 0.06, N = 324.06MIN: 23.72 / MAX: 36.761. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdhurricane-server48121620SE +/- 0.01, N = 316.85MIN: 16.68 / MAX: 22.411. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyhurricane-server612182430SE +/- 0.41, N = 326.58MIN: 24.96 / MAX: 30.511. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3hurricane-server48121620SE +/- 0.13, N = 315.81MIN: 15.42 / MAX: 19.931. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50hurricane-server48121620SE +/- 0.10, N = 314.46MIN: 14.12 / MAX: 27.881. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnethurricane-server1.23982.47963.71944.95926.199SE +/- 0.01, N = 35.51MIN: 5.39 / MAX: 7.731. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18hurricane-server3691215SE +/- 0.04, N = 39.01MIN: 8.81 / MAX: 20.831. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16hurricane-server612182430SE +/- 0.22, N = 325.23MIN: 24.68 / MAX: 29.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenethurricane-server48121620SE +/- 0.03, N = 317.39MIN: 17.15 / MAX: 21.411. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefacehurricane-server0.8551.712.5653.424.275SE +/- 0.02, N = 33.80MIN: 3.71 / MAX: 6.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0hurricane-server3691215SE +/- 0.02, N = 39.73MIN: 9.35 / MAX: 161. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnethurricane-server246810SE +/- 0.01, N = 36.91MIN: 6.66 / MAX: 10.951. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2hurricane-server3691215SE +/- 0.04, N = 39.51MIN: 9.3 / MAX: 13.611. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3hurricane-server246810SE +/- 0.02, N = 37.93MIN: 7.73 / MAX: 12.061. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2hurricane-server246810SE +/- 0.02, N = 37.41MIN: 7.07 / MAX: 11.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenethurricane-server48121620SE +/- 0.13, N = 315.81MIN: 15.42 / MAX: 19.931. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152hurricane-server510152025SE +/- 0.16, N = 319.48MIN: 15.08 / MAX: 19.95

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152hurricane-server510152025SE +/- 0.09, N = 319.51MIN: 16.27 / MAX: 19.75

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152hurricane-server510152025SE +/- 0.11, N = 319.50MIN: 6 / MAX: 19.85

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152hurricane-server510152025SE +/- 0.21, N = 319.55MIN: 14.89 / MAX: 19.9

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152hurricane-server510152025SE +/- 0.01, N = 319.69MIN: 18.64 / MAX: 19.84

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: GoogLeNethurricane-server60120180240300SE +/- 0.12, N = 3283.28

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text Vectorizershurricane-server1530456075SE +/- 0.08, N = 365.351. (F9X) gfortran options: -O0

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lhurricane-server3691215SE +/- 0.09, N = 312.47MIN: 10.7 / MAX: 12.87

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Sampleshurricane-server1530456075SE +/- 0.18, N = 368.491. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 16 - Model: GoogLeNethurricane-server510152025SE +/- 0.02, N = 320.15

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Threadinghurricane-server1530456075SE +/- 0.19, N = 368.021. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: AlexNethurricane-server150300450600750SE +/- 0.16, N = 3679.63

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50hurricane-server20406080100SE +/- 0.12, N = 390.02

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Max SP Flopshurricane-server2K4K6K8K10KSE +/- 0.57, N = 39437.511. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Quanthurricane-server5001000150020002500SE +/- 26.36, N = 42531.33

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Plot Non-Negative Matrix Factorization

hurricane-server: The test quit with a non-zero exit status. E: KeyError:

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: Recurrent Neural Network Training - Engine: CPUhurricane-server2004006008001000SE +/- 0.33, N = 3811.25MIN: 807.441. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Wardhurricane-server1326395265SE +/- 0.10, N = 357.031. (F9X) gfortran options: -O0

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: Recurrent Neural Network Inference - Engine: CPUhurricane-server100200300400500SE +/- 0.21, N = 3450.86MIN: 447.461. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 1 - Model: VGG-16hurricane-server0.36230.72461.08691.44921.8115SE +/- 0.00, N = 31.61

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAhurricane-server816243240SE +/- 0.08, N = 336.501. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: VGG-16hurricane-server714212835SE +/- 0.29, N = 329.28

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Face Detection FP16 - Device: CPUhurricane-server2004006008001000SE +/- 0.52, N = 3790.62MIN: 405.74 / MAX: 865.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Face Detection FP16 - Device: CPUhurricane-server510152025SE +/- 0.01, N = 320.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Face Detection FP16-INT8 - Device: CPUhurricane-server90180270360450SE +/- 0.40, N = 3412.40MIN: 344.16 / MAX: 498.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Face Detection FP16-INT8 - Device: CPUhurricane-server918273645SE +/- 0.04, N = 338.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARShurricane-server1122334455SE +/- 0.08, N = 346.721. (F9X) gfortran options: -O0

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 16 - Model: AlexNethurricane-server714212835SE +/- 0.01, N = 330.06

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Machine Translation EN To DE FP16 - Device: CPUhurricane-server1530456075SE +/- 0.05, N = 368.60MIN: 36.93 / MAX: 98.871. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Machine Translation EN To DE FP16 - Device: CPUhurricane-server50100150200250SE +/- 0.16, N = 3233.041. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Noise Suppression Poconet-Like FP16 - Device: CPUhurricane-server3691215SE +/- 0.01, N = 311.90MIN: 7.82 / MAX: 26.251. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Noise Suppression Poconet-Like FP16 - Device: CPUhurricane-server6001200180024003000SE +/- 3.23, N = 32638.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Person Detection FP16 - Device: CPUhurricane-server20406080100SE +/- 0.07, N = 383.08MIN: 40.18 / MAX: 109.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Person Detection FP16 - Device: CPUhurricane-server4080120160200SE +/- 0.15, N = 3192.301. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Person Detection FP32 - Device: CPUhurricane-server20406080100SE +/- 0.26, N = 382.70MIN: 39.41 / MAX: 109.651. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Person Detection FP32 - Device: CPUhurricane-server4080120160200SE +/- 0.60, N = 3193.191. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Person Vehicle Bike Detection FP16 - Device: CPUhurricane-server246810SE +/- 0.01, N = 37.31MIN: 4.6 / MAX: 22.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Person Vehicle Bike Detection FP16 - Device: CPUhurricane-server5001000150020002500SE +/- 2.00, N = 32176.461. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Road Segmentation ADAS FP16-INT8 - Device: CPUhurricane-server510152025SE +/- 0.01, N = 319.12MIN: 11.33 / MAX: 35.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Road Segmentation ADAS FP16-INT8 - Device: CPUhurricane-server2004006008001000SE +/- 0.46, N = 3834.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Person Re-Identification Retail FP16 - Device: CPUhurricane-server1.30952.6193.92855.2386.5475SE +/- 0.01, N = 35.82MIN: 3.76 / MAX: 20.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Person Re-Identification Retail FP16 - Device: CPUhurricane-server6001200180024003000SE +/- 2.65, N = 32734.751. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Road Segmentation ADAS FP16 - Device: CPUhurricane-server510152025SE +/- 0.01, N = 320.28MIN: 14.13 / MAX: 39.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Road Segmentation ADAS FP16 - Device: CPUhurricane-server2004006008001000SE +/- 0.23, N = 3786.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4hurricane-server3K6K9K12K15KSE +/- 14.50, N = 316113.8

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2hurricane-server7K14K21K28K35KSE +/- 101.48, N = 331730.6

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet Mobilehurricane-server5K10K15K20K25KSE +/- 13.44, N = 324134.5

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Face Detection Retail FP16-INT8 - Device: CPUhurricane-server1.03282.06563.09844.13125.164SE +/- 0.00, N = 34.59MIN: 2.72 / MAX: 18.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Face Detection Retail FP16-INT8 - Device: CPUhurricane-server15003000450060007500SE +/- 3.13, N = 36872.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Floathurricane-server30060090012001500SE +/- 4.16, N = 31306.87

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUhurricane-server0.09230.18460.27690.36920.4615SE +/- 0.00, N = 30.41MIN: 0.23 / MAX: 11.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUhurricane-server14K28K42K56K70KSE +/- 85.18, N = 364559.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

TensorFlow Lite

This is a benchmark of the TensorFlow Lite implementation focused on TensorFlow machine learning for mobile, IoT, edge, and other cases. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNethurricane-server400800120016002000SE +/- 6.84, N = 32015.74

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Vehicle Detection FP16-INT8 - Device: CPUhurricane-server246810SE +/- 0.01, N = 36.72MIN: 4.28 / MAX: 18.931. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Vehicle Detection FP16-INT8 - Device: CPUhurricane-server5001000150020002500SE +/- 3.74, N = 32367.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUhurricane-server0.13050.2610.39150.5220.6525SE +/- 0.00, N = 30.58MIN: 0.3 / MAX: 12.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUhurricane-server10K20K30K40K50KSE +/- 19.37, N = 347505.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Handwritten English Recognition FP16-INT8 - Device: CPUhurricane-server612182430SE +/- 0.06, N = 327.52MIN: 21.34 / MAX: 50.491. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Handwritten English Recognition FP16-INT8 - Device: CPUhurricane-server2004006008001000SE +/- 2.64, N = 31160.601. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Handwritten English Recognition FP16 - Device: CPUhurricane-server714212835SE +/- 0.23, N = 329.25MIN: 20.04 / MAX: 50.131. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Handwritten English Recognition FP16 - Device: CPUhurricane-server2004006008001000SE +/- 8.53, N = 31092.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Vehicle Detection FP16 - Device: CPUhurricane-server3691215SE +/- 0.00, N = 310.37MIN: 5.46 / MAX: 41.761. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Vehicle Detection FP16 - Device: CPUhurricane-server30060090012001500SE +/- 0.45, N = 31536.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Weld Porosity Detection FP16 - Device: CPUhurricane-server48121620SE +/- 0.11, N = 316.08MIN: 8.51 / MAX: 99.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Weld Porosity Detection FP16 - Device: CPUhurricane-server400800120016002000SE +/- 12.59, N = 31984.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Face Detection Retail FP16 - Device: CPUhurricane-server0.74031.48062.22092.96123.7015SE +/- 0.01, N = 33.29MIN: 1.9 / MAX: 35.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Face Detection Retail FP16 - Device: CPUhurricane-server10002000300040005000SE +/- 12.23, N = 34791.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.5Model: Weld Porosity Detection FP16-INT8 - Device: CPUhurricane-server246810SE +/- 0.07, N = 38.29MIN: 4.39 / MAX: 59.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.5Model: Weld Porosity Detection FP16-INT8 - Device: CPUhurricane-server8001600240032004000SE +/- 28.56, N = 33835.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl -lstdc++fs

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical Onlyhurricane-server1020304050SE +/- 0.31, N = 344.821. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Componentshurricane-server918273645SE +/- 0.57, N = 340.061. (F9X) gfortran options: -O0

LiteRT

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: Inception V4hurricane-server4K8K12K16K20KSE +/- 15.14, N = 316671.7

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: Inception ResNet V2hurricane-server4K8K12K16K20KSE +/- 63.82, N = 319022.7

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: NASNet Mobilehurricane-server7K14K21K28K35KSE +/- 132.52, N = 331332.4

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: DeepLab V3hurricane-server7001400210028003500SE +/- 8.28, N = 33250.31

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: Mobilenet Floathurricane-server30060090012001500SE +/- 1.07, N = 31332.51

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: SqueezeNethurricane-server5001000150020002500SE +/- 8.16, N = 32102.34

OpenBenchmarking.orgMicroseconds, Fewer Is BetterLiteRT 2024-10-15Model: Quantized COCO SSD MobileNet v1hurricane-server5001000150020002500SE +/- 11.18, N = 32299.81

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152hurricane-server612182430SE +/- 0.17, N = 324.69MIN: 19.29 / MAX: 25.17

Whisperfile

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisperfile 20Aug24Model Size: Tinyhurricane-server1122334455SE +/- 0.20, N = 348.32

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50hurricane-server20406080100SE +/- 0.02, N = 384.65

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: AlexNethurricane-server140280420560700SE +/- 0.16, N = 3651.72

OpenVINO GenAI

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Gemma-7b-int4-ov - Device: CPU - Time Per Output Tokenhurricane-server816243240SE +/- 0.27, N = 333.21

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Gemma-7b-int4-ov - Device: CPU - Time To First Tokenhurricane-server1632486480SE +/- 0.30, N = 372.72

OpenBenchmarking.orgtokens/s, More Is BetterOpenVINO GenAI 2024.5Model: Gemma-7b-int4-ov - Device: CPUhurricane-server714212835SE +/- 0.24, N = 330.11

DeepSpeech

Mozilla DeepSpeech is a speech-to-text engine powered by TensorFlow for machine learning and derived from Baidu's Deep Speech research paper. This test profile times the speech-to-text process for a roughly three minute audio recording. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6Acceleration: CPUhurricane-server1224364860SE +/- 0.09, N = 353.37

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50hurricane-server1224364860SE +/- 0.23, N = 352.09MIN: 45 / MAX: 53.04

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50hurricane-server1224364860SE +/- 0.34, N = 351.39MIN: 38.88 / MAX: 52.76

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50hurricane-server1224364860SE +/- 0.18, N = 352.12MIN: 39.21 / MAX: 53.52

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50hurricane-server1224364860SE +/- 0.19, N = 352.10MIN: 45.33 / MAX: 52.97

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50hurricane-server1224364860SE +/- 0.13, N = 352.12MIN: 38.35 / MAX: 52.97

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorhurricane-server612182430SE +/- 0.02, N = 325.661. (F9X) gfortran options: -O0

OpenVINO GenAI

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Falcon-7b-instruct-int4-ov - Device: CPU - Time Per Output Tokenhurricane-server612182430SE +/- 0.11, N = 325.40

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Falcon-7b-instruct-int4-ov - Device: CPU - Time To First Tokenhurricane-server1326395265SE +/- 0.06, N = 359.06

OpenBenchmarking.orgtokens/s, More Is BetterOpenVINO GenAI 2024.5Model: Falcon-7b-instruct-int4-ov - Device: CPUhurricane-server918273645SE +/- 0.16, N = 339.37

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNethurricane-server60120180240300SE +/- 0.20, N = 3262.31

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50hurricane-server20406080100SE +/- 0.12, N = 374.57

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 1 - Model: ResNet-50hurricane-server1.0622.1243.1864.2485.31SE +/- 0.02, N = 34.72

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: Deconvolution Batch shapes_1d - Engine: CPUhurricane-server1.27912.55823.83735.11646.3955SE +/- 0.00716, N = 35.68471MIN: 3.771. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

R Benchmark

This test is a quick-running survey of general R performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterR Benchmarkhurricane-server0.03840.07680.11520.15360.192SE +/- 0.0004, N = 30.1707

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic Regressionhurricane-server3691215SE +/- 0.08, N = 312.941. (F9X) gfortran options: -O0

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50hurricane-server1530456075SE +/- 0.51, N = 367.94MIN: 50.17 / MAX: 69.35

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNethurricane-server50100150200250SE +/- 1.98, N = 3241.16

OpenVINO GenAI

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: TinyLlama-1.1B-Chat-v1.0 - Device: CPU - Time Per Output Tokenhurricane-server48121620SE +/- 0.04, N = 315.21

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: TinyLlama-1.1B-Chat-v1.0 - Device: CPU - Time To First Tokenhurricane-server48121620SE +/- 0.01, N = 318.24

OpenBenchmarking.orgtokens/s, More Is BetterOpenVINO GenAI 2024.5Model: TinyLlama-1.1B-Chat-v1.0 - Device: CPUhurricane-server1530456075SE +/- 0.16, N = 365.76

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Texture Read Bandwidthhurricane-server130260390520650SE +/- 0.03, N = 3588.111. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenVINO GenAI

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Phi-3-mini-128k-instruct-int4-ov - Device: CPU - Time Per Output Tokenhurricane-server510152025SE +/- 0.13, N = 321.20

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO GenAI 2024.5Model: Phi-3-mini-128k-instruct-int4-ov - Device: CPU - Time To First Tokenhurricane-server918273645SE +/- 0.10, N = 341.41

OpenBenchmarking.orgtokens/s, More Is BetterOpenVINO GenAI 2024.5Model: Phi-3-mini-128k-instruct-int4-ov - Device: CPUhurricane-server1122334455SE +/- 0.29, N = 347.17

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNethurricane-server120240360480600SE +/- 1.95, N = 3532.95

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: IP Shapes 1D - Engine: CPUhurricane-server0.19130.38260.57390.76520.9565SE +/- 0.001043, N = 30.850385MIN: 0.821. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: RCV1 Logreg Convergencet

hurricane-server: The test quit with a non-zero exit status. E: IndexError: list index out of range

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNethurricane-server50100150200250SE +/- 0.53, N = 3214.21

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 0.2Input: 26 Minute Long Talking Samplehurricane-server3691215SE +/- 0.05, N = 311.361. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 1 - Model: GoogLeNethurricane-server48121620SE +/- 0.04, N = 314.65

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: VGG-16hurricane-server48121620SE +/- 0.01, N = 315.04

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50hurricane-server48121620SE +/- 0.05, N = 317.32

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: GPU - Batch Size: 1 - Model: AlexNethurricane-server48121620SE +/- 0.14, N = 315.94

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNethurricane-server100200300400500SE +/- 0.31, N = 3465.66

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: IP Shapes 3D - Engine: CPUhurricane-server0.15310.30620.45930.61240.7655SE +/- 0.000710, N = 30.680494MIN: 0.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNethurricane-server80160240320400SE +/- 0.72, N = 3376.93

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: FFT SPhurricane-server30060090012001500SE +/- 10.08, N = 121479.171. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: Convolution Batch Shapes Auto - Engine: CPUhurricane-server0.25830.51660.77491.03321.2915SE +/- 0.00120, N = 31.14790MIN: 1.111. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNethurricane-server1224364860SE +/- 0.66, N = 353.62

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNethurricane-server1326395265SE +/- 0.18, N = 358.02

oneDNN

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.6Harness: Deconvolution Batch shapes_3d - Engine: CPUhurricane-server0.40850.8171.22551.6342.0425SE +/- 0.00663, N = 31.81557MIN: 1.791. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl

SHOC Scalable HeterOgeneous Computing

The CUDA and OpenCL version of Vetter's Scalable HeterOgeneous Computing benchmark suite. SHOC provides a number of different benchmark programs for evaluating the performance and stability of compute devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Bus Speed Readbackhurricane-server3691215SE +/- 0.00, N = 313.541. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: GEMM SGEMM_Nhurricane-server12002400360048006000SE +/- 0.39, N = 35521.351. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Triadhurricane-server3691215SE +/- 0.00, N = 312.901. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Reductionhurricane-server60120180240300SE +/- 0.04, N = 3257.891. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGB/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: Bus Speed Downloadhurricane-server3691215SE +/- 0.00, N = 313.211. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGHash/s, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: MD5 Hashhurricane-server48121620SE +/- 0.00, N = 314.491. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOPS, More Is BetterSHOC Scalable HeterOgeneous Computing 2020-04-17Target: OpenCL - Benchmark: S3Dhurricane-server60120180240300SE +/- 0.10, N = 3268.851. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Plot Fast KMeans

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'matplotlib.tri.triangulation'

Benchmark: Plot Lasso Path

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'matplotlib.tri.triangulation'

Benchmark: Plot Singular Value Decomposition

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'matplotlib.tri.triangulation'

Benchmark: Glmnet

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'glmnet'

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Inference - Network: VGG16 - Device: CPU

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

Benchmark: scikit_linearridgeregression

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'imp'

Benchmark: scikit_qda

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'imp'

Benchmark: scikit_ica

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'imp'

Benchmark: scikit_svm

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'imp'

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

Detector: Contextual Anomaly Detector OSE

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Earthgecko Skyline

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Windowed Gaussian

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: KNN CAD

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Bayesian Changepoint

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

Detector: Relative Entropy

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'pandas'

spaCy

The spaCy library is an open-source solution for advanced neural language processing (NLP). The spaCy library leverages Python and is a leading neural language processing solution. This test profile times the spaCy CPU performance with various models. Learn more via the OpenBenchmarking.org test page.

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tqdm'

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

hurricane-server: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

Llamafile

Test: llava-v1.5-7b-q4 - Acceleration: CPU

hurricane-server: The test quit with a non-zero exit status.

Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU

hurricane-server: The test quit with a non-zero exit status.

Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU

hurricane-server: The test quit with a non-zero exit status.

Llama.cpp

Model: llama-2-70b-chat.Q5_0.gguf

hurricane-server: The test quit with a non-zero exit status. E: ./llama-cpp: 4: ./llama-bench: not found

Model: llama-2-13b.Q4_0.gguf

hurricane-server: The test quit with a non-zero exit status. E: ./llama-cpp: 4: ./llama-bench: not found

Model: llama-2-7b.Q4_0.gguf

hurricane-server: The test quit with a non-zero exit status. E: ./llama-cpp: 4: ./llama-bench: not found

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: bertsquad-12 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: T5 Encoder - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: T5 Encoder - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ZFNet-512 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: ZFNet-512 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: yolov4 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: GPT-2 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: super-resolution-10 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

Model: GPT-2 - Device: CPU - Executor: Parallel

hurricane-server: The test quit with a non-zero exit status. E: ./onnx: line 2: ./onnxruntime/build/Linux/Release/onnxruntime_perf_test: No such file or directory

TNN

TNN is an open-source deep learning reasoning framework developed by Tencent. Learn more via the OpenBenchmarking.org test page.

Target: CPU - Model: SqueezeNet v1.1

hurricane-server: The test quit with a non-zero exit status. E: ./tnn: 3: ./test/TNNTest: not found

Target: CPU - Model: SqueezeNet v2

hurricane-server: The test quit with a non-zero exit status. E: ./tnn: 3: ./test/TNNTest: not found

Target: CPU - Model: MobileNet v2

hurricane-server: The test quit with a non-zero exit status. E: ./tnn: 3: ./test/TNNTest: not found

Target: CPU - Model: DenseNet

hurricane-server: The test quit with a non-zero exit status. E: ./tnn: 3: ./test/TNNTest: not found

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

Model: GoogleNet - Acceleration: CPU - Iterations: 1000

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Model: GoogleNet - Acceleration: CPU - Iterations: 200

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Model: GoogleNet - Acceleration: CPU - Iterations: 100

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Model: AlexNet - Acceleration: CPU - Iterations: 1000

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Model: AlexNet - Acceleration: CPU - Iterations: 200

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Model: AlexNet - Acceleration: CPU - Iterations: 100

hurricane-server: The test quit with a non-zero exit status. E: ./caffe: 3: ./tools/caffe: not found

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

hurricane-server: The test quit with a non-zero exit status. E: ./deepsparse: 2: /.local/bin/deepsparse.benchmark: not found

240 Results Shown

TensorFlow:
  GPU - 512 - VGG-16
  GPU - 256 - VGG-16
  GPU - 512 - ResNet-50
Scikit-Learn
TensorFlow:
  GPU - 256 - ResNet-50
  GPU - 64 - VGG-16
Scikit-Learn
TensorFlow
Scikit-Learn
TensorFlow:
  GPU - 32 - VGG-16
  CPU - 512 - VGG-16
  GPU - 512 - AlexNet
Scikit-Learn
TensorFlow:
  GPU - 256 - GoogLeNet
  GPU - 64 - ResNet-50
  GPU - 16 - VGG-16
Scikit-Learn
TensorFlow:
  CPU - 256 - VGG-16
  GPU - 256 - AlexNet
Scikit-Learn
Whisper.cpp
Scikit-Learn
TensorFlow:
  CPU - 512 - ResNet-50
  GPU - 32 - ResNet-50
Scikit-Learn:
  SGDOneClassSVM
  Tree
LeelaChessZero
Scikit-Learn:
  TSNE MNIST Dataset
  Hist Gradient Boosting Higgs Boson
TensorFlow
Scikit-Learn:
  Isolation Forest
  Hist Gradient Boosting
  Hist Gradient Boosting Adult
Whisperfile
PyTorch
TensorFlow:
  CPU - 256 - ResNet-50
  GPU - 16 - ResNet-50
Scikit-Learn:
  GLM
  Plot Hierarchical
LiteRT
Whisper.cpp
Scikit-Learn
PyTorch:
  CPU - 256 - Efficientnet_v2_l
  CPU - 512 - Efficientnet_v2_l
  CPU - 64 - Efficientnet_v2_l
  CPU - 16 - Efficientnet_v2_l
TensorFlow:
  CPU - 64 - VGG-16
  GPU - 64 - AlexNet
Scikit-Learn
TensorFlow
Scikit-Learn
XNNPACK:
  QS8MobileNetV2
  FP16MobileNetV3Small
  FP16MobileNetV3Large
  FP16MobileNetV2
  FP16MobileNetV1
  FP32MobileNetV3Small
  FP32MobileNetV3Large
  FP32MobileNetV2
  FP32MobileNetV1
TensorFlow
Scikit-Learn:
  Plot Polynomial Kernel Approximation
  Feature Expansions
OpenCV
Scikit-Learn
Numpy Benchmark
Whisperfile
Scikit-Learn
Whisper.cpp
TensorFlow:
  CPU - 32 - VGG-16
  GPU - 32 - AlexNet
Scikit-Learn
NCNN:
  Vulkan GPU - FastestDet
  Vulkan GPU - vision_transformer
  Vulkan GPU - regnety_400m
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - yolov4-tiny
  Vulkan GPUv2-yolov3v2-yolov3 - mobilenetv2-yolov3
  Vulkan GPU - resnet50
  Vulkan GPU - alexnet
  Vulkan GPU - resnet18
  Vulkan GPU - vgg16
  Vulkan GPU - googlenet
  Vulkan GPU - blazeface
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - mnasnet
  Vulkan GPU - shufflenet-v2
  Vulkan GPU-v3-v3 - mobilenet-v3
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU - mobilenet
  CPU - FastestDet
  CPU - vision_transformer
  CPU - regnety_400m
  CPU - squeezenet_ssd
  CPU - yolov4-tiny
  CPUv2-yolov3v2-yolov3 - mobilenetv2-yolov3
  CPU - resnet50
  CPU - alexnet
  CPU - resnet18
  CPU - vgg16
  CPU - googlenet
  CPU - blazeface
  CPU - efficientnet-b0
  CPU - mnasnet
  CPU - shufflenet-v2
  CPU-v3-v3 - mobilenet-v3
  CPU-v2-v2 - mobilenet-v2
  CPU - mobilenet
PyTorch:
  CPU - 256 - ResNet-152
  CPU - 32 - ResNet-152
  CPU - 512 - ResNet-152
  CPU - 16 - ResNet-152
  CPU - 64 - ResNet-152
TensorFlow
Scikit-Learn
PyTorch
Scikit-Learn
TensorFlow
Scikit-Learn
TensorFlow:
  CPU - 512 - AlexNet
  CPU - 64 - ResNet-50
SHOC Scalable HeterOgeneous Computing
TensorFlow Lite
oneDNN
Scikit-Learn
oneDNN
TensorFlow
Scikit-Learn
TensorFlow
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
Scikit-Learn
TensorFlow
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Noise Suppression Poconet-Like FP16 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Person Re-Identification Retail FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
TensorFlow Lite:
  Inception V4
  Inception ResNet V2
  NASNet Mobile
OpenVINO:
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
TensorFlow Lite
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
TensorFlow Lite
OpenVINO:
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
Scikit-Learn:
  Hist Gradient Boosting Categorical Only
  Kernel PCA Solvers / Time vs. N Components
LiteRT:
  Inception V4
  Inception ResNet V2
  NASNet Mobile
  DeepLab V3
  Mobilenet Float
  SqueezeNet
  Quantized COCO SSD MobileNet v1
PyTorch
Whisperfile
TensorFlow:
  CPU - 32 - ResNet-50
  CPU - 256 - AlexNet
OpenVINO GenAI:
  Gemma-7b-int4-ov - CPU - Time Per Output Token
  Gemma-7b-int4-ov - CPU - Time To First Token
  Gemma-7b-int4-ov - CPU
DeepSpeech
PyTorch:
  CPU - 512 - ResNet-50
  CPU - 16 - ResNet-50
  CPU - 256 - ResNet-50
  CPU - 64 - ResNet-50
  CPU - 32 - ResNet-50
Scikit-Learn
OpenVINO GenAI:
  Falcon-7b-instruct-int4-ov - CPU - Time Per Output Token
  Falcon-7b-instruct-int4-ov - CPU - Time To First Token
  Falcon-7b-instruct-int4-ov - CPU
TensorFlow:
  CPU - 64 - GoogLeNet
  CPU - 16 - ResNet-50
  GPU - 1 - ResNet-50
oneDNN
R Benchmark
Scikit-Learn
PyTorch
TensorFlow
OpenVINO GenAI:
  TinyLlama-1.1B-Chat-v1.0 - CPU - Time Per Output Token
  TinyLlama-1.1B-Chat-v1.0 - CPU - Time To First Token
  TinyLlama-1.1B-Chat-v1.0 - CPU
SHOC Scalable HeterOgeneous Computing
OpenVINO GenAI:
  Phi-3-mini-128k-instruct-int4-ov - CPU - Time Per Output Token
  Phi-3-mini-128k-instruct-int4-ov - CPU - Time To First Token
  Phi-3-mini-128k-instruct-int4-ov - CPU
TensorFlow
oneDNN
TensorFlow
RNNoise
TensorFlow:
  GPU - 1 - GoogLeNet
  CPU - 1 - VGG-16
  CPU - 1 - ResNet-50
  GPU - 1 - AlexNet
  CPU - 32 - AlexNet
oneDNN
TensorFlow
SHOC Scalable HeterOgeneous Computing
oneDNN
TensorFlow:
  CPU - 1 - GoogLeNet
  CPU - 1 - AlexNet
oneDNN
SHOC Scalable HeterOgeneous Computing:
  OpenCL - Bus Speed Readback
  OpenCL - GEMM SGEMM_N
  OpenCL - Triad
  OpenCL - Reduction
  OpenCL - Bus Speed Download
  OpenCL - MD5 Hash
  OpenCL - S3D