m7g.8xlarge

amazon testing on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2407014-NE-M7G8XLARG26
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
m7g.8xlarge
July 01 2024
  6 Hours, 36 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


m7g.8xlargeOpenBenchmarking.orgPhoronix Test SuiteARMv8 Neoverse-V1 (32 Cores)Amazon EC2 m7g.8xlarge (1.0 BIOS)Amazon Device 0200128GB322GB Amazon Elastic Block StoreAmazon ElasticUbuntu 22.046.5.0-1017-aws (aarch64)1.3.255GCC 11.4.0ext4amazonProcessorMotherboardChipsetMemoryDiskNetworkOSKernelVulkanCompilerFile-SystemSystem LayerM7g.8xlarge BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 BHB + srbds: Not affected + tsx_async_abort: Not affected

m7g.8xlargewhisper-cpp: ggml-small.en - 2016 State of the Unionwhisper-cpp: ggml-medium.en - 2016 State of the Unionwhisper-cpp: ggml-base.en - 2016 State of the Unionopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopencv: Stitchingopencv: DNN - Deep Neural Networkopencv: Image Processingopencv: Coreopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: yolov4 - CPU - Parallelonnx: yolov4 - CPU - Parallelopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Standardonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Standardopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUonnx: T5 Encoder - CPU - Parallelonnx: T5 Encoder - CPU - Parallelopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardopencv: Features 2Dopencv: Object Detectionllama-cpp: Meta-Llama-3-8B-Instruct-Q8_0.ggufopencv: Videom7g.8xlarge175.66688447.3545579.84601188.0542.5027990123510104680959153042.372.582152.723.68157.7796.33812172.4465.79884377.6721.16493.6216.20378.2421.12871.8101.14704170.8846.764.49827221.8696.87024145.418698.9871.43063111.4658.97170218.1884.58322113.1970.6653.796118.5872111.8628.939262.75571362.477199.0440.14155.0151.5868.16117.294.38209228.14625.35315.3687.392811.442754.645218.298824.18330.6714.76541.3323.02347.3548.08166.2826.56300.838.75912.221.00857990.0772.053893.432.093811.902.55225391.5913.74916266.6365.34746186.96112.783478.219312.634379.1387541562723622.4322649OpenBenchmarking.org

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-small.en - Input: 2016 State of the Unionm7g.8xlarge4080120160200SE +/- 1.75, N = 12175.671. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-medium.en - Input: 2016 State of the Unionm7g.8xlarge100200300400500SE +/- 3.36, N = 3447.351. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-base.en - Input: 2016 State of the Unionm7g.8xlarge20406080100SE +/- 0.90, N = 1579.851. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 1.26, N = 15188.05MIN: 181.17 / MAX: 522.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge1020304050SE +/- 0.27, N = 1542.501. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Stitchingm7g.8xlarge60K120K180K240K300KSE +/- 731.75, N = 32799011. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Test: Graph API

m7g.8xlarge: The test quit with a non-zero exit status. E: AbsExact error: G-API output and reference output matrixes are not bitexact equal.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural Networkm7g.8xlarge5K10K15K20K25KSE +/- 328.30, N = 15235101. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Image Processingm7g.8xlarge20K40K60K80K100KSE +/- 456.84, N = 31046801. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Corem7g.8xlarge20K40K60K80K100KSE +/- 763.60, N = 3959151. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge7001400210028003500SE +/- 4.43, N = 33042.37MIN: 2686.87 / MAX: 4827.931. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge0.58051.1611.74152.3222.9025SE +/- 0.00, N = 32.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge5001000150020002500SE +/- 2.09, N = 32152.72MIN: 1698.08 / MAX: 4190.061. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge0.8281.6562.4843.3124.14SE +/- 0.00, N = 33.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge306090120150SE +/- 0.81, N = 3157.781. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.03236, N = 36.338121. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.19, N = 3172.451. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.30472.60943.91415.21886.5235SE +/- 0.00628, N = 35.798841. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.20, N = 3377.67MIN: 204.87 / MAX: 512.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge510152025SE +/- 0.01, N = 321.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge110220330440550SE +/- 0.65, N = 3493.62MIN: 490.17 / MAX: 527.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge48121620SE +/- 0.02, N = 316.201. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.53, N = 3378.24MIN: 227 / MAX: 513.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge510152025SE +/- 0.03, N = 321.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge2004006008001000SE +/- 1.67, N = 3871.811. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge0.25810.51620.77431.03241.2905SE +/- 0.00220, N = 31.147041. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.28, N = 3170.88MIN: 155.18 / MAX: 333.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge1122334455SE +/- 0.08, N = 346.761. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge1.01212.02423.03634.04845.0605SE +/- 0.00333, N = 34.498271. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge50100150200250SE +/- 0.16, N = 3221.871. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge246810SE +/- 0.01798, N = 36.870241. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge306090120150SE +/- 0.38, N = 3145.421. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge150300450600750SE +/- 0.31, N = 3698.991. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge0.32190.64380.96571.28761.6095SE +/- 0.00065, N = 31.430631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.56, N = 3111.471. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.04540, N = 38.971701. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 0.68, N = 3218.191. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge1.03122.06243.09364.12485.156SE +/- 0.01426, N = 34.583221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.01, N = 3113.19MIN: 111.13 / MAX: 150.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge1632486480SE +/- 0.00, N = 370.661. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.08, N = 353.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge510152025SE +/- 0.03, N = 318.591. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge306090120150SE +/- 0.05, N = 3111.861. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.00371, N = 38.939261. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge0.621.241.862.483.1SE +/- 0.02156, N = 32.755711. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge80160240320400SE +/- 2.89, N = 3362.481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.25, N = 3199.04MIN: 196.82 / MAX: 221.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge918273645SE +/- 0.05, N = 340.141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge306090120150SE +/- 0.19, N = 3155.01MIN: 152.7 / MAX: 178.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge1224364860SE +/- 0.06, N = 351.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge1530456075SE +/- 0.06, N = 368.16MIN: 54.18 / MAX: 123.571. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.09, N = 3117.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge0.9861.9722.9583.9444.93SE +/- 0.02583, N = 34.382091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 1.34, N = 3228.151. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.10, N = 325.35MIN: 22.3 / MAX: 40.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge70140210280350SE +/- 1.24, N = 3315.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.34, N = 387.391. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.04, N = 311.441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.03, N = 354.651. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge510152025SE +/- 0.01, N = 318.301. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge612182430SE +/- 0.01, N = 324.18MIN: 22.42 / MAX: 224.51. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge70140210280350SE +/- 0.16, N = 3330.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge48121620SE +/- 0.03, N = 314.76MIN: 11.7 / MAX: 167.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge120240360480600SE +/- 1.04, N = 3541.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.02, N = 323.02MIN: 17.36 / MAX: 46.191. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.30, N = 3347.351. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge1122334455SE +/- 0.06, N = 348.08MIN: 46.76 / MAX: 54.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.24, N = 3166.281. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.01, N = 326.56MIN: 23.79 / MAX: 51.561. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge70140210280350SE +/- 0.08, N = 3300.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge246810SE +/- 0.00, N = 38.75MIN: 7.24 / MAX: 15.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge2004006008001000SE +/- 0.14, N = 3912.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.22690.45380.68070.90761.1345SE +/- 0.00169, N = 31.008571. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge2004006008001000SE +/- 1.64, N = 3990.081. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge0.46130.92261.38391.84522.3065SE +/- 0.00, N = 32.05MIN: 1.25 / MAX: 22.941. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 3.20, N = 33893.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge0.47030.94061.41091.88122.3515SE +/- 0.00, N = 32.09MIN: 1.01 / MAX: 26.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 1.66, N = 33811.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge0.57431.14861.72292.29722.8715SE +/- 0.01221, N = 32.552251. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge80160240320400SE +/- 1.87, N = 3391.591. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.84361.68722.53083.37444.218SE +/- 0.00128, N = 33.749161. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge60120180240300SE +/- 0.09, N = 3266.641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.20322.40643.60964.81286.016SE +/- 0.02060, N = 35.347461. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.72, N = 3186.961. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.00, N = 312.781. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.01, N = 378.221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge3691215SE +/- 0.01, N = 312.631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge20406080100SE +/- 0.08, N = 379.141. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Features 2Dm7g.8xlarge12K24K36K48K60KSE +/- 156.98, N = 3541561. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Object Detectionm7g.8xlarge6K12K18K24K30KSE +/- 127.55, N = 3272361. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Llama.cpp

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b3067Model: Meta-Llama-3-8B-Instruct-Q8_0.ggufm7g.8xlarge510152025SE +/- 0.15, N = 322.431. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -mcpu=native -lopenblas

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Videom7g.8xlarge5K10K15K20K25KSE +/- 79.53, N = 3226491. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

91 Results Shown

Whisper.cpp:
  ggml-small.en - 2016 State of the Union
  ggml-medium.en - 2016 State of the Union
  ggml-base.en - 2016 State of the Union
OpenVINO:
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
OpenCV:
  Stitching
  DNN - Deep Neural Network
  Image Processing
  Core
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  Faster R-CNN R-50-FPN-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  Faster R-CNN R-50-FPN-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Person Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
ONNX Runtime:
  fcn-resnet101-11 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  GPT-2 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  fcn-resnet101-11 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  yolov4 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Noise Suppression Poconet-Like FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  bertsquad-12 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  yolov4 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  T5 Encoder - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  T5 Encoder - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  ArcFace ResNet-100 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Person Re-Identification Retail FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  CaffeNet 12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  CaffeNet 12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenCV:
  Features 2D
  Object Detection
Llama.cpp
OpenCV