RTX 4070 SUPER

Intel Core i9-13900K testing with a ASUS TUF GAMING Z790-PRO WIFI (1630 BIOS) and ASUS NVIDIA GeForce RTX 4070 Ti SUPER 16GB on EndeavourOS rolling via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2402174-SADD-240211636
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Disable Color Branding
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
NVIDIA RTX 4070 SUPER
January 25
  23 Hours, 51 Minutes
NVIDIA RTX 4070
January 28
  22 Hours, 26 Minutes
NVIDIA RTX 4070 TI
January 29
  1 Day, 7 Hours, 18 Minutes
NVIDIA RTX 3090
February 07
  1 Day, 10 Hours, 51 Minutes
NVIDIA RTX 4070 TI SUPER
February 15
  1 Day, 17 Hours, 21 Minutes
Invert Behavior (Only Show Selected Data)
  1 Day, 6 Hours, 46 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


RTX 4070 SUPERProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLOpenCLCompilerFile-SystemScreen ResolutionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPERIntel Core i9-13900K @ 5.50GHz (24 Cores / 32 Threads)ASUS TUF GAMING Z790-PRO WIFI (1401 BIOS)Intel Device 7a2732GB4001GB Seagate ZP4000GP304001ASUS NVIDIA GeForce RTX 4070 SUPER 12GBRealtek ALC1220ARZOPAIntel I226-V + Intel Device 7a70EndeavourOS rolling6.7.1-arch1-1 (x86_64)KDE Plasma 5.27.10X Server 1.21.1.11NVIDIA 550.40.074.6.0OpenCL 3.0 CUDA 12.4.74GCC 13.2.1 20230801ext41920x1080MSI NVIDIA GeForce RTX 4070 12GBGCC 13.2.1 20230801 + CUDA 12.3NVIDIA GeForce RTX 4070 Ti 12GBNVIDIA GeForce RTX 3090 24GBPI-KVM Video6.7.4-arch1-1 (x86_64)ASUS TUF GAMING Z790-PRO WIFI (1630 BIOS)Intel Raptor Lake-S PCH4001GB Seagate ZP4000GP304001 + 0GB CD-ROM DriveASUS NVIDIA GeForce RTX 4070 Ti SUPER 16GBIntel I226-V + Intel Raptor Lake-S PCH CNVi WiFiOpenCL 2.1 AMD-APP (3602.0) + OpenCL 3.0 CUDA 12.4.74OpenBenchmarking.orgKernel Details- Transparent Huge Pages: alwaysCompiler Details- NVIDIA RTX 4070 SUPER: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu - NVIDIA RTX 4070: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu - NVIDIA RTX 4070 TI: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu - NVIDIA RTX 3090: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,m2,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu - NVIDIA RTX 4070 TI SUPER: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,m2,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu Processor Details- NVIDIA RTX 4070 SUPER: Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11d- NVIDIA RTX 4070: Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11d- NVIDIA RTX 4070 TI: Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11d- NVIDIA RTX 3090: Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11d- NVIDIA RTX 4070 TI SUPER: Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11fGraphics Details- NVIDIA RTX 4070 SUPER: BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 95.04.69.00.c1- NVIDIA RTX 4070: BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 95.04.3e.40.2a- NVIDIA RTX 4070 TI: BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 95.04.31.00.36- NVIDIA RTX 3090: BAR1 / Visible vRAM Size: 256 MiB - vBIOS Version: 94.02.26.08.ba- NVIDIA RTX 4070 TI SUPER: BAR1 / Visible vRAM Size: 256 MiB - vBIOS Version: 95.03.45.00.c5Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected Environment Details- NVIDIA RTX 4070, NVIDIA RTX 4070 TI, NVIDIA RTX 3090, NVIDIA RTX 4070 TI SUPER: NVCC_PREPEND_FLAGS="-ccbin /opt/cuda/bin"Python Details- NVIDIA RTX 4070: Python 3.11.6- NVIDIA RTX 4070 TI: Python 3.11.6- NVIDIA RTX 3090: Python 3.11.6- NVIDIA RTX 4070 TI SUPER: Python 3.11.7

NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPERLogarithmic Result OverviewPhoronix Test SuiteFinanceBenchNeatBenchNCNNNAMD CUDAcl-memVkResampleclpeakHashcatGpuOwlProjectPhysX OpenCL-BenchmarkRodiniaLuxCoreRenderMandelGPUVkFFTOctaneBenchRealSR-NCNNIndigoBenchBlenderTensorFlowFAHBenchWaifu2x-NCNN VulkanPyTorchLibplaceboViennaCL

RTX 4070 SUPERtensorflow: GPU - 256 - VGG-16tensorflow: GPU - 64 - VGG-16tensorflow: GPU - 32 - VGG-16tensorflow: GPU - 512 - AlexNettensorflow: GPU - 64 - ResNet-50tensorflow: GPU - 16 - VGG-16tensorflow: GPU - 256 - AlexNettensorflow: GPU - 32 - ResNet-50ncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU-v3-v3 - mobilenet-v3tensorflow: GPU - 64 - GoogLeNettensorflow: GPU - 16 - ResNet-50vkpeak: int16-vec4vkpeak: int16-scalarvkpeak: int32-vec4vkpeak: int32-scalarvkpeak: fp64-vec4vkpeak: fp64-scalarvkpeak: fp16-vec4vkpeak: fp16-scalarvkpeak: fp32-vec4vkpeak: fp32-scalartensorflow: GPU - 32 - GoogLeNettensorflow: GPU - 64 - AlexNetgpuowl: 77936867gpuowl: 332220523octanebench: Total Scoregpuowl: 57885161tensorflow: GPU - 16 - GoogLeNetvkfft: FFT + iFFT C2C multidimensional in single precisionvkfft: FFT + iFFT C2C Bluestein benchmark in double precisionluxcorerender: DLSC - GPUtensorflow: GPU - 32 - AlexNetfahbench: vkresample: 2x - Doubleindigobench: OpenCL GPU - Bedroomvkfft: FFT + iFFT C2C 1D batched in double precisionindigobench: OpenCL GPU - Supercarluxcorerender: Orange Juice - GPUtensorflow: GPU - 1 - VGG-16luxcorerender: LuxCore Benchmark - GPUvkfft: FFT + iFFT C2C Bluestein in single precisionluxcorerender: Danish Mood - GPUvkfft: FFT + iFFT R2C / C2Rblender: Barbershop - NVIDIA OptiXvkfft: FFT + iFFT C2C 1D batched in single precisionvkfft: FFT + iFFT C2C 1D batched in single precision, no reshufflingtensorflow: GPU - 16 - AlexNetvkfft: FFT + iFFT C2C 1D batched in half precisionlibplacebo: av1_grain_laplibplacebo: hdr_lutlibplacebo: hdr_peakdetectlibplacebo: polar_nocomputelibplacebo: deband_heavyrealsr-ncnn: 4x - Yesblender: Fishy Cat - NVIDIA OptiXtensorflow: GPU - 1 - AlexNetpytorch: NVIDIA CUDA GPU - 32 - Efficientnet_v2_lnamd-cuda: ATPase Simulation - 327,506 Atomstensorflow: GPU - 1 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 512 - Efficientnet_v2_lviennacl: CPU BLAS - dGEMM-TTviennacl: CPU BLAS - dGEMM-TNviennacl: CPU BLAS - dGEMM-NTviennacl: CPU BLAS - dGEMM-NNviennacl: CPU BLAS - dGEMV-Tviennacl: CPU BLAS - dGEMV-Nviennacl: CPU BLAS - dDOTviennacl: CPU BLAS - dAXPYviennacl: CPU BLAS - dCOPYviennacl: CPU BLAS - sDOTviennacl: CPU BLAS - sAXPYviennacl: CPU BLAS - sCOPYpytorch: NVIDIA CUDA GPU - 256 - Efficientnet_v2_lviennacl: OpenCL BLAS - dGEMM-TTviennacl: OpenCL BLAS - dGEMM-TNviennacl: OpenCL BLAS - dGEMM-NTviennacl: OpenCL BLAS - dGEMM-NNviennacl: OpenCL BLAS - dGEMV-Tviennacl: OpenCL BLAS - dGEMV-Nviennacl: OpenCL BLAS - dDOTviennacl: OpenCL BLAS - dAXPYviennacl: OpenCL BLAS - dCOPYviennacl: OpenCL BLAS - sDOTviennacl: OpenCL BLAS - sAXPYviennacl: OpenCL BLAS - sCOPYblender: BMW27 - NVIDIA OptiXpytorch: NVIDIA CUDA GPU - 16 - Efficientnet_v2_lblender: Pabellon Barcelona - NVIDIA OptiXblender: Classroom - NVIDIA OptiXopencl-benchmark: Memory Bandwidth Coalesced Writeopencl-benchmark: Memory Bandwidth Coalesced Readopencl-benchmark: INT8 Computeopencl-benchmark: INT16 Computeopencl-benchmark: INT32 Computeopencl-benchmark: INT64 Computeopencl-benchmark: FP32 Computeopencl-benchmark: FP64 Computepytorch: NVIDIA CUDA GPU - 512 - ResNet-152pytorch: NVIDIA CUDA GPU - 64 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-152realsr-ncnn: 4x - Nopytorch: NVIDIA CUDA GPU - 32 - ResNet-152pytorch: NVIDIA CUDA GPU - 1 - Efficientnet_v2_ltensorflow: GPU - 1 - GoogLeNetpytorch: NVIDIA CUDA GPU - 16 - ResNet-152vkresample: 2x - Singleclpeak: Double-Precision Doubleluxcorerender: Rainbow Colors and Prism - GPUpytorch: NVIDIA CUDA GPU - 64 - ResNet-50pytorch: NVIDIA CUDA GPU - 1 - ResNet-50hashcat: MD5hashcat: SHA1hashcat: SHA-512pytorch: NVIDIA CUDA GPU - 1 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-50rodinia: OpenCL Particle Filterpytorch: NVIDIA CUDA GPU - 16 - ResNet-50pytorch: NVIDIA CUDA GPU - 512 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-50hashcat: TrueCrypt RIPEMD160 + XTScl-mem: Copycl-mem: Writecl-mem: Readhashcat: 7-Zipwaifu2x-ncnn: 2x - 3 - Yesclpeak: Global Memory Bandwidthmandelgpu: GPUfinancebench: Black-Scholes OpenCLneatbench: GPUclpeak: Integer Compute INTclpeak: Single-Precision Floatarrayfire: Conjugate Gradient OpenCLNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1.5035.105.551.4834.165.512.86844.6111.116.8663.8246.2616.178.97117.815.073.852.313.038.6211.040.842.2515.525.4615.6133.97646.41137.44720.973789869.0715.6750299445113.5933.4366.0576339.59319.8012431752.81311.721.3512.821516610.565479451.30739297507831.591317054171.003905.983292.372327.552186.7034.8859.4513.92102.600.067914.35102.60103.5712211511711910910296.887.270.8165156132103.176135995845773892104584374233703923345.5714.2912.60455.01464.8614.30717.17019.8894.21438.5940.621195.30196.07194.586.323195.39106.3712.62195.4018.489630.1127.67507.45557.7367583033333221326000003232733333201.94504.673.480509.45504.27501.50802967331.8407.5446.211764672.855437.65587219538.25.912407018170.5435492.691.501.535.215.551.505.552.67382.826.215.1820.748.725.785.1145.523.592.242.082.487.206.060.842.1515.545.4915.6333.93530.32112.61647.997867714.8015.6647212388611.7433.32317.1952415.16018.2032239048.51710.401.3610.92137148.894709758.44777747905731.451377624152.413946.903329.261968.371843.2642.85211.0314.04102.900.074984.34101.55101.4311812112212210910396.786.871.0166153131101.245024944774733872094564554233623893306.21103.6816.5514.86459.43465.1812.11614.28416.3773.44331.7680.510187.51186.63187.277.092187.69107.5912.78187.2618.016515.1723.26458.36546.7656147866667182024666672673300000198.18459.934.098458.39459.27459.94660967330.3406.7446.39769673.168437.21516770131.26.906407014555.1928479.391.51.51.535.445.531.4934.615.503.04497.665.896.1316.3712.256.077.7434.493.464.142.012.547.457.370.822.0915.505.4615.8134.06676.59145.84735.940593919.1315.6951528464713.9533.29382.1637322.06420.2562543153.58911.891.3813.231512510.995544650.73739427514131.701362104143.963976.043475.062459.032306.5633.6269.0214.7996.500.067884.32103.20103.50124125118117102.710396.487.371.3168156132103.246486346126043912114574374243653933365.43103.4513.9712.30457.17465.0715.73118.28121.0474.42040.9140.660194.87197.02195.865.962198.82108.5912.79194.2918.456667.0527.71505.62535.3973312233333235324000003462500000201.193.291502.92504.66505.55858600333.3412.2446.312626332.854437.63619106132.55.226407019821.1038691.731.511.511.535.585.571.4934.465.572.65354.576.734.9011.2912.703.604.1217.883.342.162.042.347.276.140.872.2115.635.4916329.7213264.9120009.7320295.27638.74638.8439860.8020151.4426699.6620353.9515.6733.93645.99137.32674.250912866.3115.6850856419512.9933.53343.0199333.63920.9593091252.01412.141.3813.121420510.204841854.3014187614431131.982732214100.363369.885055.882116.792020.1630.31310.6414.4599.050.108224.3599.8499.2511312111911311010395.286.270.2132.115413299.435935945955923741876597246053764983636.3198.1117.3015.26887.31864.1113.72717.00120.0273.13539.3950.637164.35164.14161.015.556163.74105.5512.82164.1410.323642.2333.29419.03525.1267177300000213237333333081866667197.12416.893.844419.76416.20420.29797833360.8753.8825.810560003.202816.55484098913.85.741309017923.3334906.791.471.461.4635.025.331.4533.955.352.55312.106.595.1917.208.794.417.5824.853.482.262.132.707.486.460.882.1615.005.3221156.9915901.3223768.2723888.02750.68750.4947340.5223894.7031635.4723920.6715.1133.55761.61163.41876.4369941025.9915.2959790504716.2332.88394.7356285.98824.5702794761.33813.641.3214.611614112.425937844.4910400310554931.101439924044.723822.163913.342653.032495.9230.7248.3212.26102.830.077154.14103.49103.5311712011912282.678.570.864.352.7129120107102.837317146896814242185755855124104693735.04103.6612.5611.20608.94619.0317.61520.50323.6604.41445.9500.743198.01196.50198.705.633197.82105.8612.24198.5813.363750.3631.86527.82558.8282004966667263886000003887033333200.46529.142.973531.96529.49532.77961733370.7551.9595.214207002.660582.84656484783.70.5012084.122171.2543244.79OpenBenchmarking.org

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 256 - Model: VGG-16NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.33980.67961.01941.35921.699SE +/- 0.00, N = 3SE +/- 0.00, N = 31.501.511.47

Device: GPU - Batch Size: 256 - Model: VGG-16

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: AttributeError: 'collections.OrderedDict' object has no attribute 'empty'

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 64 - Model: VGG-16NVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.33980.67961.01941.35921.699SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 31.501.501.511.46

Device: GPU - Batch Size: 64 - Model: VGG-16

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: UnboundLocalError: cannot access local variable 'decorators' where it is not associated with a value

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 32 - Model: VGG-16NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.33750.6751.01251.351.6875SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 2SE +/- 0.00, N = 3SE +/- 0.00, N = 31.501.501.501.501.46

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 512 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER816243240SE +/- 0.02, N = 2SE +/- 0.03, N = 3SE +/- 0.09, N = 2SE +/- 0.01, N = 3SE +/- 0.01, N = 335.1035.2135.4435.5835.02

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 64 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1.25332.50663.75995.01326.2665SE +/- 0.01, N = 2SE +/- 0.00, N = 3SE +/- 0.01, N = 2SE +/- 0.01, N = 3SE +/- 0.02, N = 35.555.555.535.575.33

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 16 - Model: VGG-16NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.33750.6751.01251.351.6875SE +/- 0.00, N = 2SE +/- 0.01, N = 2SE +/- 0.00, N = 3SE +/- 0.00, N = 31.481.501.491.491.45

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 256 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER816243240SE +/- 0.01, N = 3SE +/- 0.07, N = 2SE +/- 0.07, N = 3SE +/- 0.05, N = 334.1634.6134.4633.95

Device: GPU - Batch Size: 256 - Model: AlexNet

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: UnboundLocalError: cannot access local variable 'kind' where it is not associated with a value

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 32 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1.25332.50663.75995.01326.2665SE +/- 0.01, N = 2SE +/- 0.01, N = 2SE +/- 0.02, N = 3SE +/- 0.01, N = 3SE +/- 0.00, N = 35.515.555.505.575.35

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 0.29, N = 9SE +/- 0.10, N = 9SE +/- 0.12, N = 8SE +/- 2.14, N = 6SE +/- 0.26, N = 32.862.342.846.382.54MIN: 2.17 / MAX: 577.17MIN: 2 / MAX: 3.86MIN: 2.4 / MAX: 5.07MIN: 2.14 / MAX: 1476.09MIN: 2.14 / MAX: 4.211. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 87.53, N = 9SE +/- 61.31, N = 9SE +/- 25.65, N = 9SE +/- 76.74, N = 6SE +/- 136.49, N = 3844.61281.56390.18663.24571.53MIN: 46.34 / MAX: 1866.93MIN: 46.48 / MAX: 1913.33MIN: 46.49 / MAX: 1816.77MIN: 46.42 / MAX: 1833.21MIN: 48.2 / MAX: 1819.891. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 3.28, N = 9SE +/- 0.31, N = 8SE +/- 0.24, N = 9SE +/- 1.17, N = 6SE +/- 0.60, N = 311.116.505.978.066.77MIN: 5.49 / MAX: 4942.19MIN: 5.52 / MAX: 460.02MIN: 5.49 / MAX: 7.35MIN: 5.43 / MAX: 1922.26MIN: 5.54 / MAX: 7.631. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 1.76, N = 9SE +/- 0.17, N = 9SE +/- 0.29, N = 9SE +/- 1.57, N = 6SE +/- 0.54, N = 36.865.275.366.635.11MIN: 4.34 / MAX: 1630.01MIN: 4.53 / MAX: 7.53MIN: 4.55 / MAX: 496.3MIN: 4.43 / MAX: 1636.66MIN: 4.43 / MAX: 8.41. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1428425670SE +/- 10.56, N = 9SE +/- 7.50, N = 9SE +/- 2.58, N = 9SE +/- 5.27, N = 6SE +/- 3.14, N = 363.8225.1116.4726.8514.26MIN: 10.28 / MAX: 858.44MIN: 10.66 / MAX: 857.35MIN: 10.61 / MAX: 826.68MIN: 10.35 / MAX: 853.14MIN: 10.89 / MAX: 673.371. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1020304050SE +/- 14.70, N = 9SE +/- 0.10, N = 9SE +/- 4.23, N = 9SE +/- 11.48, N = 6SE +/- 0.22, N = 346.268.2414.3227.778.58MIN: 7.71 / MAX: 1829.99MIN: 7.87 / MAX: 9.87MIN: 7.9 / MAX: 1787.49MIN: 7.77 / MAX: 1603.33MIN: 8.2 / MAX: 11.071. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 5.86, N = 9SE +/- 3.71, N = 9SE +/- 0.03, N = 9SE +/- 0.02, N = 6SE +/- 0.03, N = 316.179.333.743.694.38MIN: 3.52 / MAX: 436.52MIN: 3.5 / MAX: 430.03MIN: 3.61 / MAX: 3.98MIN: 3.59 / MAX: 7.37MIN: 4.29 / MAX: 6.181. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 3.49, N = 9SE +/- 3.20, N = 9SE +/- 1.33, N = 9SE +/- 6.10, N = 6SE +/- 0.08, N = 38.978.585.4717.414.64MIN: 3.94 / MAX: 922.04MIN: 3.98 / MAX: 912.04MIN: 3.95 / MAX: 726.67MIN: 4.05 / MAX: 900.27MIN: 4.46 / MAX: 7.981. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 29.60, N = 9SE +/- 19.29, N = 9SE +/- 11.81, N = 9SE +/- 22.21, N = 6SE +/- 0.19, N = 3117.8154.5432.05145.7221.76MIN: 17.16 / MAX: 647.67MIN: 17.54 / MAX: 646.66MIN: 17.34 / MAX: 644.35MIN: 17.46 / MAX: 648.88MIN: 21.34 / MAX: 23.451. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.97, N = 9SE +/- 0.09, N = 9SE +/- 0.06, N = 9SE +/- 9.20, N = 6SE +/- 0.07, N = 35.073.463.4913.873.36MIN: 3.22 / MAX: 1124.2MIN: 2.91 / MAX: 3.79MIN: 3.18 / MAX: 4.03MIN: 2.86 / MAX: 2218.7MIN: 3.21 / MAX: 3.571. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.93151.8632.79453.7264.6575SE +/- 1.31, N = 9SE +/- 0.08, N = 8SE +/- 0.05, N = 9SE +/- 0.06, N = 5SE +/- 0.13, N = 33.852.222.302.242.21MIN: 1.89 / MAX: 1093.29MIN: 1.83 / MAX: 2.54MIN: 2.15 / MAX: 2.58MIN: 2.07 / MAX: 6.02MIN: 2.01 / MAX: 3.931. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.93831.87662.81493.75324.6915SE +/- 0.34, N = 8SE +/- 0.12, N = 7SE +/- 0.10, N = 8SE +/- 2.18, N = 6SE +/- 0.19, N = 32.312.112.034.172.05MIN: 1.76 / MAX: 421.42MIN: 1.77 / MAX: 2.53MIN: 1.84 / MAX: 2.58MIN: 1.83 / MAX: 1393.33MIN: 1.83 / MAX: 6.61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1.05532.11063.16594.22125.2765SE +/- 0.44, N = 9SE +/- 2.36, N = 9SE +/- 0.07, N = 9SE +/- 0.13, N = 6SE +/- 0.09, N = 33.034.692.432.652.42MIN: 2.38 / MAX: 970.87MIN: 1.91 / MAX: 1305.64MIN: 2.09 / MAX: 5.8MIN: 2.23 / MAX: 6.49MIN: 2.24 / MAX: 9.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 0.47, N = 9SE +/- 2.50, N = 9SE +/- 0.98, N = 9SE +/- 4.97, N = 6SE +/- 0.05, N = 38.6210.148.4312.076.28MIN: 6.42 / MAX: 1101.3MIN: 6.53 / MAX: 1509.26MIN: 6.51 / MAX: 1023.8MIN: 6.42 / MAX: 1193.34MIN: 6.16 / MAX: 8.091. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 1.21, N = 9SE +/- 0.14, N = 9SE +/- 0.14, N = 9SE +/- 1.05, N = 6SE +/- 0.24, N = 311.046.065.877.496.25MIN: 5.28 / MAX: 1769.19MIN: 5.33 / MAX: 8.36MIN: 5.2 / MAX: 6.88MIN: 5.46 / MAX: 1242.73MIN: 5.84 / MAX: 6.861. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefaceNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.1980.3960.5940.7920.99SE +/- 0.04, N = 9SE +/- 0.03, N = 9SE +/- 0.03, N = 9SE +/- 0.03, N = 6SE +/- 0.05, N = 30.840.840.810.860.86MIN: 0.65 / MAX: 4.63MIN: 0.64 / MAX: 0.96MIN: 0.61 / MAX: 1.19MIN: 0.64 / MAX: 3.3MIN: 0.75 / MAX: 2.681. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 0.16, N = 9SE +/- 6.77, N = 8SE +/- 0.09, N = 9SE +/- 1.14, N = 6SE +/- 0.02, N = 32.258.712.093.191.87MIN: 1.75 / MAX: 343.7MIN: 1.73 / MAX: 1561.29MIN: 1.78 / MAX: 2.85MIN: 1.82 / MAX: 1210.31MIN: 1.81 / MAX: 5.211. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 64 - Model: GoogLeNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.07, N = 3SE +/- 0.06, N = 2SE +/- 0.08, N = 3SE +/- 0.09, N = 315.5215.5415.5015.6315.00

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 16 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1.23532.47063.70594.94126.1765SE +/- 0.00, N = 2SE +/- 0.02, N = 3SE +/- 0.01, N = 3SE +/- 0.00, N = 3SE +/- 0.02, N = 35.465.495.465.495.32

vkpeak

Vkpeak is a Vulkan compute benchmark inspired by OpenCL's clpeak. Vkpeak provides Vulkan compute performance measurements for FP16 / FP32 / FP64 / INT16 / INT32 scalar and vec4 performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGIOPS, More Is Bettervkpeak 20230730int16-vec4NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 1.52, N = 3SE +/- 3.02, N = 316331.1621124.09

OpenBenchmarking.orgGIOPS, More Is Bettervkpeak 20230730int16-scalarNVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3K6K9K12K15KSE +/- 0.21, N = 3SE +/- 22.68, N = 313259.9715859.37

OpenBenchmarking.orgGIOPS, More Is Bettervkpeak 20230730int32-vec4NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 2.34, N = 3SE +/- 34.76, N = 319996.9223733.30

OpenBenchmarking.orgGIOPS, More Is Bettervkpeak 20230730int32-scalarNVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 3.21, N = 3SE +/- 0.36, N = 320280.3323874.85

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp64-vec4NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.02, N = 3SE +/- 0.00, N = 3638.72749.76

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp64-scalarNVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.03, N = 3SE +/- 0.01, N = 3638.70750.47

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp16-vec4NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER10K20K30K40K50KSE +/- 69.71, N = 3SE +/- 76.15, N = 339771.9747192.56

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp16-scalarNVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 34.71, N = 3SE +/- 34.93, N = 320080.4723825.05

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp32-vec4NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER7K14K21K28K35KSE +/- 1.51, N = 3SE +/- 43.84, N = 326563.7231591.71

OpenBenchmarking.orgGFLOPS, More Is Bettervkpeak 20230730fp32-scalarNVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 36.15, N = 3SE +/- 38.13, N = 320263.1323883.53

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 32 - Model: GoogLeNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.01, N = 2SE +/- 0.03, N = 3SE +/- 0.03, N = 3SE +/- 0.06, N = 3SE +/- 0.06, N = 315.6115.6315.8115.6715.11

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 64 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER816243240SE +/- 0.14, N = 3SE +/- 0.06, N = 3SE +/- 0.08, N = 3SE +/- 0.06, N = 333.9733.9334.0633.9333.55

Device: GPU - Batch Size: 512 - Model: VGG-16

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Segmentation fault

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: AttributeError: 'function' object has no attribute 'empty'

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Segmentation fault

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Segmentation fault

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: Fatal Python error: Segmentation fault

GpuOwl

GpuOwl is a Mersenne primality tester leveraging OpenCL for cross-vendor GPU acceleration. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgIterations / Second, More Is BetterGpuOwl 7.2.1Exponent: 77936867NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.00, N = 3SE +/- 0.09, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3646.41530.32676.59645.99761.61

OpenBenchmarking.orgIterations / Second, More Is BetterGpuOwl 7.2.1Exponent: 332220523NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.01, N = 3137.44112.61145.84137.32163.41

OctaneBench

OctaneBench is a test of the OctaneRender on the GPU and requires the use of NVIDIA CUDA. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterOctaneBench 2020.1Total ScoreNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000720.97648.00735.94674.25876.44

GpuOwl

GpuOwl is a Mersenne primality tester leveraging OpenCL for cross-vendor GPU acceleration. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgIterations / Second, More Is BetterGpuOwl 7.2.1Exponent: 57885161NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 1.26, N = 3SE +/- 0.00, N = 3SE +/- 2.53, N = 3SE +/- 2.01, N = 3SE +/- 0.35, N = 3869.07714.80919.13866.311025.99

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 16 - Model: GoogLeNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.03, N = 3SE +/- 0.03, N = 3SE +/- 0.07, N = 3SE +/- 0.05, N = 3SE +/- 0.02, N = 315.6715.6615.6915.6815.29

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C multidimensional in single precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER13K26K39K52K65KSE +/- 407.19, N = 15SE +/- 476.57, N = 5SE +/- 417.77, N = 15SE +/- 407.28, N = 15SE +/- 251.10, N = 350299472125152850856597901. (CXX) g++ options: -O3 -lrt

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C Bluestein benchmark in double precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER11002200330044005500SE +/- 12.55, N = 3SE +/- 4.51, N = 3SE +/- 11.35, N = 3SE +/- 9.84, N = 3SE +/- 11.37, N = 3445138864647419550471. (CXX) g++ options: -O3 -lrt

LuxCoreRender

LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/sec, More Is BetterLuxCoreRender 2.6Scene: DLSC - Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.01, N = 3SE +/- 0.01, N = 3SE +/- 0.00, N = 3SE +/- 1.13, N = 12SE +/- 0.01, N = 313.5911.7413.9512.9916.23MIN: 12.52 / MAX: 13.84MIN: 11.35 / MAX: 11.83MIN: 13.67 / MAX: 14.14MIN: 0.52 / MAX: 14.69MIN: 15.91 / MAX: 16.36

vkpeak

Vkpeak is a Vulkan compute benchmark inspired by OpenCL's clpeak. Vkpeak provides Vulkan compute performance measurements for FP16 / FP32 / FP64 / INT16 / INT32 scalar and vec4 performance. Learn more via the OpenBenchmarking.org test page.

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status.

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 32 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER816243240SE +/- 0.15, N = 2SE +/- 0.18, N = 3SE +/- 0.04, N = 3SE +/- 0.05, N = 3SE +/- 0.19, N = 333.4033.3233.2933.5332.88

FAHBench

FAHBench is a Folding@Home benchmark on the GPU. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNs Per Day, More Is BetterFAHBench 2.3.2NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER90180270360450SE +/- 0.39, N = 3SE +/- 0.12, N = 3SE +/- 0.26, N = 3SE +/- 0.26, N = 3SE +/- 0.22, N = 3366.06317.20382.16343.02394.74

VkResample

VkResample is a Vulkan-based image upscaling library based on VkFFT. The sample input file is upscaling a 4K image to 8K using Vulkan-based GPU acceleration. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterVkResample 1.0Upscale: 2x - Precision: DoubleNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER90180270360450SE +/- 0.30, N = 3SE +/- 0.77, N = 3SE +/- 0.35, N = 3SE +/- 0.30, N = 3SE +/- 0.02, N = 3339.59415.16322.06333.64285.991. (CXX) g++ options: -O3

IndigoBench

This is a test of Indigo Renderer's IndigoBench benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/s, More Is BetterIndigoBench 4.4Acceleration: OpenCL GPU - Scene: BedroomNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER612182430SE +/- 0.01, N = 3SE +/- 0.01, N = 3SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.01, N = 319.8018.2020.2620.9624.57

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C 1D batched in double precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER7K14K21K28K35KSE +/- 146.69, N = 3SE +/- 125.94, N = 3SE +/- 302.46, N = 3SE +/- 50.66, N = 3SE +/- 325.03, N = 324317223902543130912279471. (CXX) g++ options: -O3 -lrt

IndigoBench

This is a test of Indigo Renderer's IndigoBench benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/s, More Is BetterIndigoBench 4.4Acceleration: OpenCL GPU - Scene: SupercarNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1428425670SE +/- 0.03, N = 3SE +/- 0.03, N = 3SE +/- 0.02, N = 3SE +/- 0.03, N = 3SE +/- 0.06, N = 352.8148.5253.5952.0161.34

LuxCoreRender

LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/sec, More Is BetterLuxCoreRender 2.6Scene: Orange Juice - Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.07, N = 3SE +/- 0.03, N = 3SE +/- 0.00, N = 3SE +/- 0.01, N = 3SE +/- 0.15, N = 411.7210.4011.8912.1413.64MIN: 9.6 / MAX: 15.44MIN: 8.31 / MAX: 13.9MIN: 9.85 / MAX: 15.88MIN: 10.24 / MAX: 16.71MIN: 11.16 / MAX: 18.46

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 1 - Model: VGG-16NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.31050.6210.93151.2421.5525SE +/- 0.01, N = 2SE +/- 0.01, N = 3SE +/- 0.01, N = 3SE +/- 0.00, N = 31.351.361.381.381.32

LuxCoreRender

LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/sec, More Is BetterLuxCoreRender 2.6Scene: LuxCore Benchmark - Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.02, N = 3SE +/- 0.01, N = 3SE +/- 0.01, N = 3SE +/- 0.03, N = 2SE +/- 0.00, N = 312.8210.9213.2313.1214.61MIN: 4.84 / MAX: 14.62MIN: 4.45 / MAX: 12.42MIN: 5.41 / MAX: 15.13MIN: 4.85 / MAX: 15.21MIN: 5.91 / MAX: 16.88

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C Bluestein in single precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3K6K9K12K15KSE +/- 102.52, N = 3SE +/- 52.09, N = 3SE +/- 118.41, N = 3SE +/- 115.62, N = 3SE +/- 73.00, N = 315166137141512514205161411. (CXX) g++ options: -O3 -lrt

LuxCoreRender

LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/sec, More Is BetterLuxCoreRender 2.6Scene: Danish Mood - Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 0.08, N = 3SE +/- 0.06, N = 3SE +/- 0.11, N = 3SE +/- 0.04, N = 3SE +/- 0.03, N = 310.568.8910.9910.2012.42MIN: 3.7 / MAX: 12.17MIN: 3.32 / MAX: 10.26MIN: 4.17 / MAX: 12.71MIN: 4.07 / MAX: 11.93MIN: 4.35 / MAX: 14.32

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT R2C / C2RNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER13K26K39K52K65KSE +/- 702.53, N = 15SE +/- 745.02, N = 13SE +/- 520.37, N = 3SE +/- 320.62, N = 3SE +/- 772.47, N = 1554794470975544648418593781. (CXX) g++ options: -O3 -lrt

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.0Blend File: Barbershop - Compute: NVIDIA OptiXNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1326395265SE +/- 0.10, N = 3SE +/- 0.04, N = 3SE +/- 0.05, N = 3SE +/- 0.02, N = 2SE +/- 0.08, N = 351.3058.4450.7354.3044.49

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C 1D batched in single precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER30K60K90K120K150KSE +/- 7.94, N = 3SE +/- 13.72, N = 3SE +/- 0.88, N = 3SE +/- 9.64, N = 3SE +/- 33.60, N = 37392977774739421418761040031. (CXX) g++ options: -O3 -lrt

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C 1D batched in single precision, no reshufflingNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER30K60K90K120K150KSE +/- 37.77, N = 3SE +/- 5.84, N = 3SE +/- 28.54, N = 3SE +/- 37.44, N = 3SE +/- 20.80, N = 37507879057751411443111055491. (CXX) g++ options: -O3 -lrt

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 16 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER714212835SE +/- 0.17, N = 3SE +/- 0.08, N = 3SE +/- 0.07, N = 3SE +/- 0.07, N = 331.5931.4531.7031.9831.10

VkFFT

OpenBenchmarking.orgBenchmark Score, More Is BetterVkFFT 1.2.31Test: FFT + iFFT C2C 1D batched in half precisionNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER60K120K180K240K300KSE +/- 159.17, N = 3SE +/- 1301.92, N = 3SE +/- 1708.38, N = 3SE +/- 160.60, N = 3SE +/- 3524.05, N = 121317051377621362102732211439921. (CXX) g++ options: -O3 -lrt

Libplacebo

Libplacebo is a multimedia rendering library based on the core rendering code of the MPV player. The libplacebo benchmark relies on the Vulkan API and tests various primitives. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterLibplacebo 5.229.1Test: av1_grain_lapNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER9001800270036004500SE +/- 5.52, N = 3SE +/- 66.69, N = 3SE +/- 21.66, N = 3SE +/- 12.99, N = 3SE +/- 39.01, N = 34171.004103.404140.874126.894057.411. (CXX) g++ options: -lm -pthread -ldl -fvisibility=hidden -std=c++20 -O2 -fno-math-errno -fPIC -MD -MQ -MF

OpenBenchmarking.orgFPS, More Is BetterLibplacebo 5.229.1Test: hdr_lutNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER9001800270036004500SE +/- 12.09, N = 3SE +/- 10.06, N = 3SE +/- 5.47, N = 3SE +/- 13.62, N = 3SE +/- 17.88, N = 33905.983927.113971.613313.263845.511. (CXX) g++ options: -lm -pthread -ldl -fvisibility=hidden -std=c++20 -O2 -fno-math-errno -fPIC -MD -MQ -MF

OpenBenchmarking.orgFPS, More Is BetterLibplacebo 5.229.1Test: hdr_peakdetectNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER11002200330044005500SE +/- 3.65, N = 3SE +/- 11.75, N = 3SE +/- 99.97, N = 3SE +/- 43.13, N = 3SE +/- 28.18, N = 33292.373310.023544.604997.083931.571. (CXX) g++ options: -lm -pthread -ldl -fvisibility=hidden -std=c++20 -O2 -fno-math-errno -fPIC -MD -MQ -MF

OpenBenchmarking.orgFPS, More Is BetterLibplacebo 5.229.1Test: polar_nocomputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER6001200180024003000SE +/- 0.24, N = 3SE +/- 0.16, N = 3SE +/- 0.26, N = 3SE +/- 7.22, N = 3SE +/- 0.38, N = 32327.551972.782461.232119.892646.701. (CXX) g++ options: -lm -pthread -ldl -fvisibility=hidden -std=c++20 -O2 -fno-math-errno -fPIC -MD -MQ -MF

OpenBenchmarking.orgFPS, More Is BetterLibplacebo 5.229.1Test: deband_heavyNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5001000150020002500SE +/- 2.26, N = 3SE +/- 0.08, N = 3SE +/- 0.56, N = 3SE +/- 4.93, N = 3SE +/- 2.22, N = 32186.701847.982306.672017.752493.291. (CXX) g++ options: -lm -pthread -ldl -fvisibility=hidden -std=c++20 -O2 -fno-math-errno -fPIC -MD -MQ -MF

RealSR-NCNN

RealSR-NCNN is an NCNN neural network implementation of the RealSR project and accelerated using the Vulkan API. RealSR is the Real-World Super Resolution via Kernel Estimation and Noise Injection. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image by a scale of 4x with Vulkan. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRealSR-NCNN 20200818Scale: 4x - TAA: YesNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1020304050SE +/- 0.02, N = 3SE +/- 0.23, N = 3SE +/- 0.03, N = 3SE +/- 0.06, N = 3SE +/- 0.02, N = 334.8942.8533.6330.3130.72

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.0Blend File: Fishy Cat - Compute: NVIDIA OptiXNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 0.06, N = 13SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.08, N = 9SE +/- 0.06, N = 139.4511.039.0210.648.32

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 1 - Model: AlexNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.22, N = 2SE +/- 0.16, N = 3SE +/- 0.06, N = 2SE +/- 0.20, N = 15SE +/- 0.13, N = 1513.9214.0414.7914.4512.26

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_lNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 6.65, N = 5SE +/- 0.13, N = 3SE +/- 0.62, N = 3102.60102.9096.5099.05102.83MIN: 94.84 / MAX: 104.25MIN: 95.98 / MAX: 104.54MIN: 64.35 / MAX: 104.79MIN: 91.8 / MAX: 100.69MIN: 92.44 / MAX: 105.47

NAMD CUDA

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. This version of the NAMD test profile uses CUDA GPU acceleration. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgdays/ns, Fewer Is BetterNAMD CUDA 2.14ATPase Simulation - 327,506 AtomsNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.02430.04860.07290.09720.1215SE +/- 0.00031, N = 3SE +/- 0.00021, N = 3SE +/- 0.00061, N = 3SE +/- 0.00042, N = 3SE +/- 0.00018, N = 30.067910.074980.067880.108220.07715

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 1 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.97881.95762.93643.91524.894SE +/- 0.01, N = 3SE +/- 0.02, N = 2SE +/- 0.03, N = 3SE +/- 0.02, N = 34.354.344.324.354.14

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_lNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 1.49, N = 2SE +/- 0.45, N = 3SE +/- 0.39, N = 2SE +/- 0.14, N = 3SE +/- 0.13, N = 3102.60101.55103.2099.84103.49MIN: 79.69 / MAX: 105.28MIN: 93.44 / MAX: 103.08MIN: 95.31 / MAX: 105.27MIN: 92.73 / MAX: 101.46MIN: 93.23 / MAX: 105.43

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_lNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.39, N = 3SE +/- 0.36, N = 2SE +/- 0.19, N = 3103.57101.43103.5099.25103.53MIN: 95.95 / MAX: 105.54MIN: 93.27 / MAX: 103.58MIN: 94.95 / MAX: 105.61MIN: 91.16 / MAX: 101.18MIN: 88.81 / MAX: 104.8

ViennaCL

ViennaCL is an open-source linear algebra library written in C++ and with support for OpenCL and OpenMP. This test profile makes use of ViennaCL's built-in benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-TTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 2.08, N = 3SE +/- 1.20, N = 3SE +/- 2.08, N = 3SE +/- 0.88, N = 3SE +/- 2.91, N = 31221181241131171. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-TNNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 1.00, N = 2SE +/- 2.31, N = 3SE +/- 2.08, N = 3SE +/- 2.08, N = 3SE +/- 3.00, N = 21151211251211201. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-NTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 2.08, N = 3SE +/- 1.76, N = 3SE +/- 1.20, N = 3SE +/- 3.28, N = 3SE +/- 3.50, N = 21171221181191191. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-NNNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 4.04, N = 3SE +/- 1.86, N = 3SE +/- 1.15, N = 3SE +/- 1.86, N = 3SE +/- 1.50, N = 21191221171131221. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMV-TNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 6.30, N = 3SE +/- 0.33, N = 3SE +/- 0.47, N = 3109.0109.0102.7110.082.61. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMV-NNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.88, N = 3SE +/- 0.46, N = 3102.0103.0103.0103.078.51. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dDOTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.09, N = 3SE +/- 0.22, N = 3SE +/- 0.58, N = 3SE +/- 0.84, N = 3SE +/- 0.19, N = 396.896.796.495.270.81. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dAXPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.12, N = 3SE +/- 0.44, N = 3SE +/- 0.57, N = 3SE +/- 0.94, N = 3SE +/- 0.12, N = 387.286.887.386.264.31. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dCOPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1632486480SE +/- 0.32, N = 3SE +/- 0.25, N = 3SE +/- 0.74, N = 3SE +/- 0.72, N = 3SE +/- 0.18, N = 370.871.071.370.252.71. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sDOTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 2.73, N = 3SE +/- 3.76, N = 3SE +/- 2.40, N = 3SE +/- 35.40, N = 3SE +/- 0.58, N = 3165.0166.0168.0132.1129.01. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sAXPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 2.19, N = 3SE +/- 4.81, N = 3SE +/- 2.00, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 31561531561541201. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sCOPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER306090120150SE +/- 1.20, N = 3SE +/- 1.20, N = 3SE +/- 0.88, N = 3SE +/- 1.20, N = 3SE +/- 0.67, N = 31321311321321071. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_lNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.05, N = 2SE +/- 0.57, N = 3SE +/- 0.18, N = 3103.17101.24103.2499.43102.83MIN: 95.79 / MAX: 105.15MIN: 93.33 / MAX: 102.92MIN: 95.41 / MAX: 104.9MIN: 90.49 / MAX: 101.97MIN: 93.16 / MAX: 105.07

ViennaCL

ViennaCL is an open-source linear algebra library written in C++ and with support for OpenCL and OpenMP. This test profile makes use of ViennaCL's built-in benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMM-TTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 1.33, N = 36135026485937311. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMM-TNNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER150300450600750SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.67, N = 3SE +/- 2.03, N = 3SE +/- 1.00, N = 35994946345947141. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMM-NTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER150300450600750SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 2.33, N = 3SE +/- 1.00, N = 35844776125956891. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMM-NNNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER150300450600750SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 2.31, N = 3SE +/- 1.33, N = 35774736045926811. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMV-TNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER90180270360450SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 33893873913744241. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dGEMV-NNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER50100150200250SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.00, N = 32102092111872181. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dDOTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER140280420560700SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.88, N = 3SE +/- 1.33, N = 34584564576595751. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dAXPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.33, N = 3SE +/- 0.58, N = 3SE +/- 0.00, N = 34374554377245851. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - dCOPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER130260390520650SE +/- 0.33, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.58, N = 3SE +/- 4.00, N = 34234234246055121. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - sDOTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER90180270360450SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.58, N = 3SE +/- 1.00, N = 33703623653764101. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - sAXPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER110220330440550SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.58, N = 3SE +/- 1.20, N = 33923893934984691. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: OpenCL BLAS - sCOPYNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER80160240320400SE +/- 0.33, N = 3SE +/- 0.33, N = 3SE +/- 0.00, N = 3SE +/- 1.00, N = 3SE +/- 0.33, N = 33343303363633731. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.0Blend File: BMW27 - Compute: NVIDIA OptiXNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 0.06, N = 13SE +/- 0.01, N = 3SE +/- 0.02, N = 3SE +/- 0.06, N = 14SE +/- 0.06, N = 145.576.215.436.315.04

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_lNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.52, N = 2SE +/- 0.53, N = 2SE +/- 0.33, N = 3103.68103.4598.11103.66MIN: 96.86 / MAX: 105.56MIN: 95.22 / MAX: 105.88MIN: 89.88 / MAX: 100.25MIN: 93.46 / MAX: 105.95

Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_l

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: AttributeError: 'tuple' object has no attribute '_compiled_call_impl'

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.0Blend File: Pabellon Barcelona - Compute: NVIDIA OptiXNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.01, N = 3SE +/- 0.02, N = 3SE +/- 0.02, N = 314.2916.5513.9717.3012.56

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.0Blend File: Classroom - Compute: NVIDIA OptiXNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.00, N = 3SE +/- 0.03, N = 3SE +/- 0.03, N = 3SE +/- 0.02, N = 3SE +/- 0.04, N = 312.6014.8612.3015.2611.20

ProjectPhysX OpenCL-Benchmark

ProjectPhysX OpenCL-Benchmark provides various OpenCL compute and memory bandwidth micro-benchmarks Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced WriteNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 0.14, N = 3SE +/- 0.16, N = 3SE +/- 0.11, N = 3SE +/- 0.06, N = 3SE +/- 0.57, N = 3455.01459.43457.17887.31608.941. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced ReadNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 0.01, N = 3SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.07, N = 3SE +/- 0.06, N = 3464.86465.18465.07864.11619.031. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT8 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER48121620SE +/- 0.05, N = 3SE +/- 0.02, N = 3SE +/- 0.03, N = 3SE +/- 0.07, N = 3SE +/- 0.00, N = 314.3112.1215.7313.7317.621. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT16 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER510152025SE +/- 0.00, N = 3SE +/- 0.02, N = 3SE +/- 0.02, N = 3SE +/- 0.00, N = 3SE +/- 0.02, N = 317.1714.2818.2817.0020.501. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT32 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER612182430SE +/- 0.00, N = 3SE +/- 0.02, N = 3SE +/- 0.04, N = 3SE +/- 0.06, N = 3SE +/- 0.01, N = 319.8916.3821.0520.0323.661. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT64 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.99451.9892.98353.9784.9725SE +/- 0.015, N = 3SE +/- 0.004, N = 3SE +/- 0.016, N = 3SE +/- 0.003, N = 3SE +/- 0.009, N = 34.2143.4434.4203.1354.4141. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP32 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER1020304050SE +/- 0.03, N = 3SE +/- 0.03, N = 3SE +/- 0.00, N = 3SE +/- 0.10, N = 3SE +/- 0.01, N = 338.5931.7740.9139.4045.951. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP64 ComputeNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.16720.33440.50160.66880.836SE +/- 0.000, N = 3SE +/- 0.001, N = 3SE +/- 0.001, N = 3SE +/- 0.001, N = 3SE +/- 0.001, N = 30.6210.5100.6600.6370.7431. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 1.38, N = 2SE +/- 0.05, N = 3SE +/- 0.33, N = 2SE +/- 0.81, N = 3195.30187.51194.87164.35198.01MIN: 182 / MAX: 199.43MIN: 181.57 / MAX: 188.05MIN: 180.8 / MAX: 198MIN: 149.91 / MAX: 166.09MIN: 185.3 / MAX: 202.59

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 0.51, N = 3SE +/- 0.34, N = 3SE +/- 0.78, N = 2SE +/- 0.20, N = 3196.07186.63197.02164.14196.50MIN: 171.95 / MAX: 199.96MIN: 180.51 / MAX: 187.79MIN: 183.92 / MAX: 200.54MIN: 149 / MAX: 165MIN: 179.34 / MAX: 200

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 1.14, N = 2SE +/- 0.17, N = 3SE +/- 0.19, N = 2SE +/- 0.95, N = 3194.58187.27195.86161.01198.70MIN: 183.74 / MAX: 198.52MIN: 179.9 / MAX: 188.08MIN: 181.64 / MAX: 199.2MIN: 138.12 / MAX: 165.16MIN: 185.21 / MAX: 203.36

RealSR-NCNN

RealSR-NCNN is an NCNN neural network implementation of the RealSR project and accelerated using the Vulkan API. RealSR is the Real-World Super Resolution via Kernel Estimation and Noise Injection. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image by a scale of 4x with Vulkan. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRealSR-NCNN 20200818Scale: 4x - TAA: NoNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 0.150, N = 15SE +/- 0.006, N = 3SE +/- 0.039, N = 3SE +/- 0.016, N = 3SE +/- 0.003, N = 36.3237.0925.9625.5565.633

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 0.29, N = 3SE +/- 0.28, N = 3195.39187.69198.82163.74197.82MIN: 183.94 / MAX: 198.7MIN: 182.03 / MAX: 188.31MIN: 188.33 / MAX: 201.47MIN: 144.93 / MAX: 165.03MIN: 176.19 / MAX: 201.63

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_lNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20406080100SE +/- 0.55, N = 3SE +/- 0.33, N = 3SE +/- 0.24, N = 2106.37107.59108.59105.55105.86MIN: 97.91 / MAX: 108.16MIN: 98.77 / MAX: 109.43MIN: 99.04 / MAX: 110.68MIN: 91.76 / MAX: 107.42MIN: 95.05 / MAX: 107.6

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: GPU - Batch Size: 1 - Model: GoogLeNetNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER3691215SE +/- 0.17, N = 2SE +/- 0.10, N = 3SE +/- 0.30, N = 2SE +/- 0.07, N = 3SE +/- 0.05, N = 312.6212.7812.7912.8212.24

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 0.29, N = 3SE +/- 0.33, N = 3195.40187.26194.29164.14198.58MIN: 186.09 / MAX: 197.7MIN: 179.81 / MAX: 188.21MIN: 182.25 / MAX: 197.39MIN: 145.67 / MAX: 165.38MIN: 183.91 / MAX: 201.98

VkResample

VkResample is a Vulkan-based image upscaling library based on VkFFT. The sample input file is upscaling a 4K image to 8K using Vulkan-based GPU acceleration. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterVkResample 1.0Upscale: 2x - Precision: SingleNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER510152025SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 318.4918.0218.4610.3213.361. (CXX) g++ options: -O3

clpeak

Clpeak is designed to test the peak capabilities of OpenCL devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS, More Is Betterclpeak 1.1.2OpenCL Test: Double-Precision DoubleNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 0.98, N = 3SE +/- 0.21, N = 3SE +/- 1.33, N = 3SE +/- 1.63, N = 3SE +/- 1.26, N = 3630.11515.17667.05642.23750.361. (CXX) g++ options: -O3

LuxCoreRender

LuxCoreRender is an open-source 3D physically based renderer formerly known as LuxRender. LuxCoreRender supports CPU-based rendering as well as GPU acceleration via OpenCL, NVIDIA CUDA, and NVIDIA OptiX interfaces. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgM samples/sec, More Is BetterLuxCoreRender 2.6Scene: Rainbow Colors and Prism - Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER816243240SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.07, N = 3SE +/- 0.36, N = 5SE +/- 0.09, N = 327.6723.2627.7133.2931.86MIN: 24.87 / MAX: 29.03MIN: 20.92 / MAX: 24.3MIN: 25.01 / MAX: 29.15MIN: 30.4 / MAX: 36.21MIN: 28.57 / MAX: 33.29

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER110220330440550SE +/- 0.92, N = 3SE +/- 0.27, N = 3SE +/- 1.92, N = 3SE +/- 0.24, N = 3SE +/- 1.58, N = 3507.45458.36505.62419.03527.82MIN: 423.41 / MAX: 512.88MIN: 404.89 / MAX: 461.01MIN: 426.6 / MAX: 513.25MIN: 376 / MAX: 422MIN: 419.39 / MAX: 534.44

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER120240360480600SE +/- 3.09, N = 3SE +/- 11.16, N = 12SE +/- 3.07, N = 3557.73546.76535.39525.12558.82MIN: 513.63 / MAX: 563.37MIN: 195.25 / MAX: 556.94MIN: 428.43 / MAX: 572.99MIN: 458.54 / MAX: 542.46MIN: 473.77 / MAX: 573.46

Hashcat

Hashcat is an open-source, advanced password recovery tool supporting GPU acceleration with OpenCL, NVIDIA CUDA, and Radeon ROCm. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterHashcat 6.2.4Benchmark: MD5NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER20000M40000M60000M80000M100000MSE +/- 22430807.19, N = 3SE +/- 33772046.30, N = 3SE +/- 11283665.68, N = 3SE +/- 53667246.37, N = 3SE +/- 97655010.68, N = 36758303333356147866667733122333336717730000082004966667

OpenBenchmarking.orgH/s, More Is BetterHashcat 6.2.4Benchmark: SHA1NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER6000M12000M18000M24000M30000MSE +/- 5140363.15, N = 3SE +/- 6318315.53, N = 3SE +/- 15926811.78, N = 3SE +/- 26244639.66, N = 3SE +/- 29067564.97, N = 32213260000018202466667235324000002132373333326388600000

OpenBenchmarking.orgH/s, More Is BetterHashcat 6.2.4Benchmark: SHA-512NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER800M1600M2400M3200M4000MSE +/- 1530068.99, N = 3SE +/- 1059874.21, N = 3SE +/- 721110.26, N = 3SE +/- 3288532.26, N = 3SE +/- 1098989.43, N = 332327333332673300000346250000030818666673887033333

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER4080120160200SE +/- 0.36, N = 3SE +/- 0.73, N = 3SE +/- 0.09, N = 2SE +/- 0.38, N = 3201.94198.18201.19197.12200.46MIN: 183.53 / MAX: 206.5MIN: 181.27 / MAX: 200.06MIN: 180.79 / MAX: 203.92MIN: 137.37 / MAX: 198.9MIN: 177.25 / MAX: 203.31

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER110220330440550SE +/- 1.39, N = 3SE +/- 0.34, N = 3SE +/- 0.14, N = 3SE +/- 0.54, N = 3504.67459.93416.89529.14MIN: 412.34 / MAX: 514.07MIN: 403.65 / MAX: 462.74MIN: 329.77 / MAX: 420.82MIN: 414.54 / MAX: 534.65

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: TypeError: 'NoneType' object is not callable

Rodinia

Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRodinia 3.1Test: OpenCL Particle FilterNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.92211.84422.76633.68844.6105SE +/- 0.039, N = 4SE +/- 0.008, N = 3SE +/- 0.002, N = 3SE +/- 0.030, N = 15SE +/- 0.004, N = 33.4804.0983.2913.8442.9731. (CXX) g++ options: -O2 -lOpenCL

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER120240360480600SE +/- 0.26, N = 3SE +/- 2.23, N = 3SE +/- 0.89, N = 2SE +/- 1.33, N = 3509.45458.39502.92419.76531.96MIN: 430.1 / MAX: 516.48MIN: 404.5 / MAX: 461.01MIN: 415.65 / MAX: 520.39MIN: 376.2 / MAX: 422.17MIN: 422.98 / MAX: 539.81

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER110220330440550SE +/- 4.43, N = 2SE +/- 0.43, N = 2SE +/- 0.83, N = 2SE +/- 0.40, N = 3SE +/- 1.16, N = 3504.27459.27504.66416.20529.49MIN: 418.22 / MAX: 512.44MIN: 405.48 / MAX: 461.88MIN: 424.27 / MAX: 509.08MIN: 355.45 / MAX: 419.05MIN: 410.12 / MAX: 537.25

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50NVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER120240360480600SE +/- 2.17, N = 2SE +/- 0.13, N = 2SE +/- 1.69, N = 3SE +/- 0.70, N = 3501.50459.94505.55420.29532.77MIN: 415.94 / MAX: 510.69MIN: 403.65 / MAX: 462.59MIN: 419.93 / MAX: 512.69MIN: 376.81 / MAX: 421.58MIN: 420.31 / MAX: 538.98

Hashcat

Hashcat is an open-source, advanced password recovery tool supporting GPU acceleration with OpenCL, NVIDIA CUDA, and Radeon ROCm. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterHashcat 6.2.4Benchmark: TrueCrypt RIPEMD160 + XTSNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER200K400K600K800K1000KSE +/- 633.33, N = 3SE +/- 176.38, N = 3SE +/- 888.82, N = 3SE +/- 1757.21, N = 3SE +/- 392.99, N = 3802967660967858600797833961733

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Training - Network: Mobilenet - Device: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

cl-mem

A basic OpenCL memory benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettercl-mem 2017-01-13Benchmark: CopyNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER80160240320400SE +/- 0.03, N = 3SE +/- 0.09, N = 3SE +/- 0.00, N = 3SE +/- 0.22, N = 3SE +/- 0.00, N = 3331.8330.3333.3360.8370.71. (CC) gcc options: -O2 -flto -lOpenCL

OpenBenchmarking.orgGB/s, More Is Bettercl-mem 2017-01-13Benchmark: WriteNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER160320480640800SE +/- 1.11, N = 3SE +/- 0.55, N = 3SE +/- 0.12, N = 3SE +/- 0.83, N = 3SE +/- 0.25, N = 3407.5406.7412.2753.8551.91. (CC) gcc options: -O2 -flto -lOpenCL

OpenBenchmarking.orgGB/s, More Is Bettercl-mem 2017-01-13Benchmark: ReadNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 0.12, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.32, N = 3SE +/- 0.00, N = 3446.2446.3446.3825.8595.21. (CC) gcc options: -O2 -flto -lOpenCL

Hashcat

Hashcat is an open-source, advanced password recovery tool supporting GPU acceleration with OpenCL, NVIDIA CUDA, and Radeon ROCm. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterHashcat 6.2.4Benchmark: 7-ZipNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER300K600K900K1200K1500KSE +/- 1991.93, N = 3SE +/- 2062.63, N = 3SE +/- 2339.04, N = 3SE +/- 1587.45, N = 3SE +/- 1628.91, N = 31176467976967126263310560001420700

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Inference - Network: DenseNet 201 - Device: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test quit with a non-zero exit status. The test run did not produce a result.

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Waifu2x-NCNN Vulkan

Waifu2x-NCNN is an NCNN neural network implementation of the Waifu2x converter project and accelerated using the Vulkan API. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image with Vulkan. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWaifu2x-NCNN Vulkan 20200818Scale: 2x - Denoise: 3 - TAA: YesNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER0.72051.4412.16152.8823.6025SE +/- 0.014, N = 3SE +/- 0.028, N = 3SE +/- 0.009, N = 3SE +/- 0.011, N = 3SE +/- 0.028, N = 32.8553.1682.8543.2022.660

Caffe

This is a benchmark of the Caffe deep learning framework and currently supports the AlexNet and Googlenet model and execution on both CPUs and NVIDIA GPUs. Learn more via the OpenBenchmarking.org test page.

Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 1000

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7670bcda4450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7bb89c5be450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x72248ee5c450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7d66735f5450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7ce671f7d450 google::LogMessageFatal::~LogMessageFatal()

Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 1000

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x74746a490450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7493bdbbc450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7338f7773450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7792f141e450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7911d0e44450 google::LogMessageFatal::~LogMessageFatal()

Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 100

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7dd7c6de3450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7b80311e3450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x736df4b59450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x77ed97de3450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x78750ffea450 google::LogMessageFatal::~LogMessageFatal()

Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 100

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x73552c3e3450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x71f0ea05a450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7898abd73450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7522f0d76450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x703a2cf99450 google::LogMessageFatal::~LogMessageFatal()

Model: GoogleNet - Acceleration: NVIDIA CUDA - Iterations: 200

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7d7151816450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7e64df79d450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x761e63d48450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7bfcc77e3450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7bc837b4a450 google::LogMessageFatal::~LogMessageFatal()

Model: AlexNet - Acceleration: NVIDIA CUDA - Iterations: 200

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7b5ea59be450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7c31ed79d450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7ba579075450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 3090: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x7ace5f7b4450 google::LogMessageFatal::~LogMessageFatal()

NVIDIA RTX 4070 TI SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: @ 0x70294d9e3450 google::LogMessageFatal::~LogMessageFatal()

clpeak

Clpeak is designed to test the peak capabilities of OpenCL devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGBPS, More Is Betterclpeak 1.1.2OpenCL Test: Global Memory BandwidthNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER2004006008001000SE +/- 0.02, N = 3SE +/- 0.02, N = 3SE +/- 0.02, N = 3SE +/- 0.02, N = 3SE +/- 0.01, N = 3437.65437.21437.63816.55582.841. (CXX) g++ options: -O3

MandelGPU

MandelGPU is an OpenCL benchmark and this test runs with the OpenCL rendering float4 kernel with a maximum of 4096 iterations. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSamples/sec, More Is BetterMandelGPU 1.3pts1OpenCL Device: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER140M280M420M560M700MSE +/- 467034.80, N = 3SE +/- 1783157.89, N = 3SE +/- 1202791.77, N = 3SE +/- 794770.01, N = 3SE +/- 1096202.13, N = 3587219538.2516770131.2619106132.5484098913.8656484783.71. (CC) gcc options: -O3 -lm -ftree-vectorize -funroll-loops -lglut -lOpenCL -lGL

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Inference - Network: Mobilenet - Device: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Waifu2x-NCNN Vulkan

Waifu2x-NCNN is an NCNN neural network implementation of the Waifu2x converter project and accelerated using the Vulkan API. NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. This test profile times how long it takes to increase the resolution of a sample image with Vulkan. Learn more via the OpenBenchmarking.org test page.

Scale: 2x - Denoise: 3 - TAA: No

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: Yes - Mode: Inference - Network: Mobilenet - Device: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test quit with a non-zero exit status. E: AttributeError: 'method_descriptor' object has no attribute 'default'

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

FinanceBench

FinanceBench is a collection of financial program benchmarks with support for benchmarking on the GPU via OpenCL and CPU benchmarking with OpenMP. The FinanceBench test cases are focused on Black-Sholes-Merton Process with Analytic European Option engine, QMC (Sobol) Monte-Carlo method (Equity Option Example), Bonds Fixed-rate bond with flat forward curve, and Repo Securities repurchase agreement. FinanceBench was originally written by the Cavazos Lab at University of Delaware. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterFinanceBench 2016-07-25Benchmark: Black-Scholes OpenCLNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER246810SE +/- 0.114, N = 15SE +/- 0.003, N = 3SE +/- 0.003, N = 3SE +/- 0.006, N = 3SE +/- 0.000, N = 35.9126.9065.2265.7410.5011. (CXX) g++ options: -O3 -march=native -fopenmp

NeatBench

NeatBench is a benchmark of the cross-platform Neat Video software on the CPU and optional GPU (OpenCL / CUDA) support. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterNeatBench 5Acceleration: GPUNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER9001800270036004500SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 0.00, N = 3SE +/- 512.75, N = 164070.04070.04070.03090.02084.1

clpeak

Clpeak is designed to test the peak capabilities of OpenCL devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGIOPS, More Is Betterclpeak 1.1.2OpenCL Test: Integer Compute INTNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER5K10K15K20K25KSE +/- 3.14, N = 3SE +/- 15.26, N = 3SE +/- 2.50, N = 3SE +/- 16.49, N = 3SE +/- 28.14, N = 318170.5414555.1919821.1017923.3322171.251. (CXX) g++ options: -O3

PlaidML

This test profile uses PlaidML deep learning framework developed by Intel for offering up various benchmarks. Learn more via the OpenBenchmarking.org test page.

FP16: No - Mode: Inference - Network: IMDB LSTM - Device: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test quit with a non-zero exit status.

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

clpeak

Clpeak is designed to test the peak capabilities of OpenCL devices. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS, More Is Betterclpeak 1.1.2OpenCL Test: Single-Precision FloatNVIDIA RTX 4070 SUPERNVIDIA RTX 4070NVIDIA RTX 4070 TINVIDIA RTX 3090NVIDIA RTX 4070 TI SUPER9K18K27K36K45KSE +/- 0.99, N = 3SE +/- 5.46, N = 3SE +/- 11.67, N = 3SE +/- 113.39, N = 3SE +/- 50.25, N = 335492.6928479.3938691.7334906.7943244.791. (CXX) g++ options: -O3

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

Backend: OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result.

Libplacebo

Libplacebo is a multimedia rendering library based on the core rendering code of the MPV player. The libplacebo benchmark relies on the Vulkan API and tests various primitives. Learn more via the OpenBenchmarking.org test page.

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: libplacebo: line 3: ./src/bench: No such file or directory

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

Target: Vulkan GPU

NVIDIA RTX 4070 SUPER: The test quit with a non-zero exit status. The test quit with a non-zero exit status. The test quit with a non-zero exit status. E: ncnn: line 3: ./benchncnn: No such file or directory

ArrayFire

ArrayFire is an GPU and CPU numeric processing library, this test uses the built-in CPU and OpenCL ArrayFire benchmarks. Learn more via the OpenBenchmarking.org test page.

Test: Conjugate Gradient OpenCL

NVIDIA RTX 4070 SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result. E: arrayfire: line 3: ./cg_opencl: No such file or directory

NVIDIA RTX 4070: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result. E: arrayfire: line 3: ./cg_opencl: No such file or directory

NVIDIA RTX 4070 TI: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result. E: arrayfire: line 3: ./cg_opencl: No such file or directory

NVIDIA RTX 3090: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result. E: arrayfire: line 3: ./cg_opencl: No such file or directory

NVIDIA RTX 4070 TI SUPER: The test run did not produce a result. The test run did not produce a result. The test run did not produce a result. E: arrayfire: line 3: ./cg_opencl: No such file or directory

148 Results Shown

TensorFlow:
  GPU - 256 - VGG-16
  GPU - 64 - VGG-16
  GPU - 32 - VGG-16
  GPU - 512 - AlexNet
  GPU - 64 - ResNet-50
  GPU - 16 - VGG-16
  GPU - 256 - AlexNet
  GPU - 32 - ResNet-50
NCNN:
  Vulkan GPU - FastestDet
  Vulkan GPU - vision_transformer
  Vulkan GPU - regnety_400m
  Vulkan GPU - squeezenet_ssd
  Vulkan GPU - yolov4-tiny
  Vulkan GPU - resnet50
  Vulkan GPU - alexnet
  Vulkan GPU - resnet18
  Vulkan GPU - vgg16
  Vulkan GPU - efficientnet-b0
  Vulkan GPU - mnasnet
  Vulkan GPU - shufflenet-v2
  Vulkan GPU-v2-v2 - mobilenet-v2
  Vulkan GPU - mobilenet
  Vulkan GPU - googlenet
  Vulkan GPU - blazeface
  Vulkan GPU-v3-v3 - mobilenet-v3
TensorFlow:
  GPU - 64 - GoogLeNet
  GPU - 16 - ResNet-50
vkpeak:
  int16-vec4
  int16-scalar
  int32-vec4
  int32-scalar
  fp64-vec4
  fp64-scalar
  fp16-vec4
  fp16-scalar
  fp32-vec4
  fp32-scalar
TensorFlow:
  GPU - 32 - GoogLeNet
  GPU - 64 - AlexNet
GpuOwl:
  77936867
  332220523
OctaneBench
GpuOwl
TensorFlow
VkFFT:
  FFT + iFFT C2C multidimensional in single precision
  FFT + iFFT C2C Bluestein benchmark in double precision
LuxCoreRender
TensorFlow
FAHBench
VkResample
IndigoBench
VkFFT
IndigoBench
LuxCoreRender
TensorFlow
LuxCoreRender
VkFFT
LuxCoreRender
VkFFT
Blender
VkFFT:
  FFT + iFFT C2C 1D batched in single precision
  FFT + iFFT C2C 1D batched in single precision, no reshuffling
TensorFlow
VkFFT
Libplacebo:
  av1_grain_lap
  hdr_lut
  hdr_peakdetect
  polar_nocompute
  deband_heavy
RealSR-NCNN
Blender
TensorFlow
PyTorch
NAMD CUDA
TensorFlow
PyTorch:
  NVIDIA CUDA GPU - 64 - Efficientnet_v2_l
  NVIDIA CUDA GPU - 512 - Efficientnet_v2_l
ViennaCL:
  CPU BLAS - dGEMM-TT
  CPU BLAS - dGEMM-TN
  CPU BLAS - dGEMM-NT
  CPU BLAS - dGEMM-NN
  CPU BLAS - dGEMV-T
  CPU BLAS - dGEMV-N
  CPU BLAS - dDOT
  CPU BLAS - dAXPY
  CPU BLAS - dCOPY
  CPU BLAS - sDOT
  CPU BLAS - sAXPY
  CPU BLAS - sCOPY
PyTorch
ViennaCL:
  OpenCL BLAS - dGEMM-TT
  OpenCL BLAS - dGEMM-TN
  OpenCL BLAS - dGEMM-NT
  OpenCL BLAS - dGEMM-NN
  OpenCL BLAS - dGEMV-T
  OpenCL BLAS - dGEMV-N
  OpenCL BLAS - dDOT
  OpenCL BLAS - dAXPY
  OpenCL BLAS - dCOPY
  OpenCL BLAS - sDOT
  OpenCL BLAS - sAXPY
  OpenCL BLAS - sCOPY
Blender
PyTorch
Blender:
  Pabellon Barcelona - NVIDIA OptiX
  Classroom - NVIDIA OptiX
ProjectPhysX OpenCL-Benchmark:
  Memory Bandwidth Coalesced Write
  Memory Bandwidth Coalesced Read
  INT8 Compute
  INT16 Compute
  INT32 Compute
  INT64 Compute
  FP32 Compute
  FP64 Compute
PyTorch:
  NVIDIA CUDA GPU - 512 - ResNet-152
  NVIDIA CUDA GPU - 64 - ResNet-152
  NVIDIA CUDA GPU - 256 - ResNet-152
RealSR-NCNN
PyTorch:
  NVIDIA CUDA GPU - 32 - ResNet-152
  NVIDIA CUDA GPU - 1 - Efficientnet_v2_l
TensorFlow
PyTorch
VkResample
clpeak
LuxCoreRender
PyTorch:
  NVIDIA CUDA GPU - 64 - ResNet-50
  NVIDIA CUDA GPU - 1 - ResNet-50
Hashcat:
  MD5
  SHA1
  SHA-512
PyTorch:
  NVIDIA CUDA GPU - 1 - ResNet-152
  NVIDIA CUDA GPU - 256 - ResNet-50
Rodinia
PyTorch:
  NVIDIA CUDA GPU - 16 - ResNet-50
  NVIDIA CUDA GPU - 512 - ResNet-50
  NVIDIA CUDA GPU - 32 - ResNet-50
Hashcat
cl-mem:
  Copy
  Write
  Read
Hashcat
Waifu2x-NCNN Vulkan
clpeak
MandelGPU
FinanceBench
NeatBench
clpeak:
  Integer Compute INT
  Single-Precision Float