2024 year

AMD Ryzen Threadripper PRO 5965WX 24-Cores testing with a ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS) and ASUS NVIDIA NV106 2GB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2402040-NE-2024YEAR116
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

AV1 2 Tests
BLAS (Basic Linear Algebra Sub-Routine) Tests 2 Tests
CPU Massive 4 Tests
Creator Workloads 2 Tests
Encoding 2 Tests
HPC - High Performance Computing 6 Tests
Large Language Models 2 Tests
Machine Learning 6 Tests
Multi-Core 2 Tests
Python Tests 3 Tests
Video Encoding 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
February 03
  1 Hour, 38 Minutes
b
February 04
  4 Hours, 50 Minutes
c
February 04
  1 Hour, 37 Minutes
d
February 04
  1 Hour, 34 Minutes
Invert Hiding All Results Option
  2 Hours, 25 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


2024 yearOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper PRO 5965WX 24-Cores @ 3.80GHz (24 Cores / 48 Threads)ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS)AMD Starship/Matisse8 x 16GB DDR4-2133MT/s Corsair CMK32GX4M2E3200C162048GB SOLIDIGM SSDPFKKW020X7ASUS NVIDIA NV106 2GBAMD Starship/MatisseVA24312 x Intel X550 + Intel Wi-Fi 6 AX200Ubuntu 23.106.5.0-13-generic (x86_64)GNOME Shell 45.0X Server + Waylandnouveau4.3 Mesa 23.2.1-1ubuntu3GCC 13.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen Resolution2024 Year BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa008205- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdResult OverviewPhoronix Test Suite100%107%114%122%129%LeelaChessZeroTensorFlowrav1eSpeedbPyTorchLlama.cppSVT-AV1Neural Magic DeepSparseLZ4 CompressionY-CruncherQuicksilverCacheBenchLlamafile

2024 yearpytorch: CPU - 1 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 256 - ResNet-50quicksilver: CTS2quicksilver: CORAL2 P1quicksilver: CORAL2 P2rav1e: 1rav1e: 5rav1e: 6rav1e: 10svt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080ptensorflow: CPU - 1 - VGG-16tensorflow: CPU - 1 - AlexNettensorflow: CPU - 16 - VGG-16tensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - GoogLeNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 16 - ResNet-50deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamcachebench: Readcachebench: Writecachebench: Read / Modify / Writecompress-lz4: 1 - Compression Speedcompress-lz4: 1 - Decompression Speedcompress-lz4: 3 - Compression Speedcompress-lz4: 3 - Decompression Speedcompress-lz4: 9 - Compression Speedcompress-lz4: 9 - Decompression Speedlczero: BLASlczero: Eigenspeedb: Rand Fillspeedb: Rand Readspeedb: Update Randspeedb: Seq Fillspeedb: Rand Fill Syncspeedb: Read While Writingspeedb: Read Rand Write Randllama-cpp: llama-2-7b.Q4_0.ggufllama-cpp: llama-2-13b.Q4_0.ggufllama-cpp: llama-2-70b-chat.Q5_0.ggufllamafile: llava-v1.5-7b-q4 - CPUllamafile: mistral-7b-instruct-v0.2.Q8_0 - CPUllamafile: wizardcoder-python-34b-v1.0.Q6_K - CPUdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamy-cruncher: 1By-cruncher: 500Mabcd40.6832.5031.922068000024210000240300001.0443.7475.26110.6346.67761.53190.916190.79418.803122.948501.42543.5542.726.268.51100.449.948.8560.8519.8726.839418.3872685.1217189.9093307.0146157.22862012.2062757.1631150.042198.51632.518817.1616306.9919156.9701151.466698.9102224.1802112.091430.48921.7296335.347976.139426.911918.472711543.37232169134.680498130857.577562828.785019.5131.244595.944.284840.5173121558330148134848431692620607474887004007232791120.7611.641.9417.2210.133.25446.631354.371617.4955.262439.04366.35185.95071.317579.885510.1424368.305158.25439.04936.361979.161810.104653.46998.9109392.958845.997635.76213.129445.256554.119415.5457.32540.4232.1032.152064666724230000240266671.0483.7915.29210.8856.66961.830190.402192.72618.682123.293506.596573.0422.706.238.46100.019.748.7960.1819.4526.647818.3317681.0038193.1106304.7712155.48371962.7047752.7784148.238898.563532.362117.1337305.3795155.5402149.781898.7456221.7053111.289230.280921.4743333.367475.506726.667218.400011543.16468769140.530992130069.848338829.365020.0131.104597.944.484841.4219146554997147432214418848618776477087070407230768620.9511.321.9417.2610.153.25448.907954.536517.59995.175339.33396.42306.10101.325280.846510.1362369.772058.349039.25556.420880.047010.121354.06128.9755394.775946.545335.972613.2388448.040854.334015.4977.34940.8231.6531.592062000024240000238900001.0443.7695.28210.9576.67861.47192.157189.25218.409122.95501.156580.4672.726.238.48100.0816.498.8560.0419.6126.674118.3589683.2461192.9801306.5028155.4031970.6106765.9923148.756198.652632.421217.2376306.5175155.6182149.950798.4979223.0515111.586430.45121.6853333.635875.989826.70518.463511543.09636269142.435503130806.245683829.155023.2131.4459845.494842.4225154557348146285738423788604758473737047502232067020.7411.271.9517.310.143.25449.295654.455417.53775.178739.12336.42666.07471.302580.572910.1277369.622857.997839.11816.417879.894610.14653.74178.952393.834646.091235.927813.1545448.903154.147415.5327.30140.3532.2132.072060000024290000238400001.0543.8915.19111.0226.63360.95192.683192.60318.922122.616506.174565.9062.696.218.5199.99.738.8959.8219.8126.690218.3959681.5303189.2673305.8614155.20161962.1551757.2715149.268398.767132.376217.1162299.8295155.1926149.764798.8912222.7232111.496530.315921.6655334.642475.707326.543518.444311543.48693969142.188854130851.30507830.375019.5131.614596.744.524844.5213151556675146473036417457612428472676896007231680420.6811.251.9517.2510.133.25449.160554.347117.58655.280439.19026.43456.10241.317580.268410.1151369.5358.409439.9776.434680.05210.106853.82378.9586394.375646.133435.83713.204448.034954.20415.5017.297OpenBenchmarking.org

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50dbac918273645SE +/- 0.19, N = 340.3540.4240.6840.82MIN: 37.34 / MAX: 40.65MIN: 37.5 / MAX: 41MIN: 37.73 / MAX: 40.91MIN: 37.73 / MAX: 41.05

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50cbda816243240SE +/- 0.12, N = 331.6532.1032.2132.50MIN: 29.55 / MAX: 31.86MIN: 29.1 / MAX: 32.53MIN: 30.29 / MAX: 32.43MIN: 30.56 / MAX: 32.75

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50cadb714212835SE +/- 0.11, N = 331.5931.9232.0732.15MIN: 29.73 / MAX: 32.12MIN: 30 / MAX: 32.18MIN: 30.1 / MAX: 32.3MIN: 30.21 / MAX: 32.69

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2dcba4M8M12M16M20MSE +/- 6666.67, N = 3206000002062000020646667206800001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1abcd5M10M15M20M25MSE +/- 11547.01, N = 3242100002423000024240000242900001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2dcba5M10M15M20M25MSE +/- 3333.33, N = 3238400002389000024026667240300001. (CXX) g++ options: -fopenmp -O3 -march=native

rav1e

Xiph rav1e is a Rust-written AV1 video encoder that claims to be the fastest and safest AV1 encoder. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 1acbd0.23720.47440.71160.94881.186SE +/- 0.004, N = 31.0441.0441.0481.054

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 5acbd0.87551.7512.62653.5024.3775SE +/- 0.014, N = 33.7473.7693.7913.891

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 6dacb1.19072.38143.57214.76285.9535SE +/- 0.008, N = 35.1915.2615.2825.292

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 10abcd3691215SE +/- 0.11, N = 510.6310.8910.9611.02

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kdbac246810SE +/- 0.015, N = 36.6336.6696.6776.6781. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kdcab1428425670SE +/- 0.07, N = 360.9561.4761.5361.831. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kbacd4080120160200SE +/- 1.08, N = 3190.40190.92192.16192.681. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kcadb4080120160200SE +/- 0.80, N = 3189.25190.79192.60192.731. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pcbad510152025SE +/- 0.08, N = 318.4118.6818.8018.921. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pdacb306090120150SE +/- 0.59, N = 3122.62122.95122.95123.291. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pcadb110220330440550SE +/- 5.37, N = 5501.16501.42506.17506.601. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080padbc130260390520650SE +/- 7.15, N = 3543.55565.91573.04580.471. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16dbac0.6121.2241.8362.4483.06SE +/- 0.01, N = 32.692.702.722.72

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetdbca246810SE +/- 0.01, N = 36.216.236.236.26

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16bcad246810SE +/- 0.03, N = 38.468.488.518.51

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetdbca20406080100SE +/- 0.20, N = 399.90100.01100.08100.44

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetdbac48121620SE +/- 0.09, N = 39.739.749.9416.49

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50bacd246810SE +/- 0.05, N = 38.798.858.858.89

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetdcba1428425670SE +/- 0.36, N = 359.8260.0460.1860.85

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50bcda510152025SE +/- 0.08, N = 319.4519.6119.8119.87

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streambcda612182430SE +/- 0.05, N = 326.6526.6726.6926.84

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambcad510152025SE +/- 0.01, N = 318.3318.3618.3918.40

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streambdca150300450600750SE +/- 0.83, N = 3681.00681.53683.25685.12

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdacb4080120160200SE +/- 0.65, N = 3189.27189.91192.98193.11

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streambdca70140210280350SE +/- 0.13, N = 3304.77305.86306.50307.01

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba306090120150SE +/- 0.26, N = 3155.20155.40155.48157.23

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca400800120016002000SE +/- 10.49, N = 31962.161962.701970.612012.21

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambadc170340510680850SE +/- 1.33, N = 3752.78757.16757.27765.99

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streambcda306090120150SE +/- 0.36, N = 3148.24148.76149.27150.04

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamabcd20406080100SE +/- 0.09, N = 398.5298.5698.6598.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streambdca816243240SE +/- 0.05, N = 332.3632.3832.4232.52

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamdbac48121620SE +/- 0.02, N = 317.1217.1317.1617.24

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdbca70140210280350SE +/- 0.76, N = 3299.83305.38306.52306.99

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdbca306090120150SE +/- 0.08, N = 3155.19155.54155.62156.97

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca306090120150SE +/- 0.01, N = 3149.76149.78149.95151.47

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamcbda20406080100SE +/- 0.29, N = 398.5098.7598.8998.91

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streambdca50100150200250SE +/- 0.12, N = 3221.71222.72223.05224.18

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streambdca306090120150SE +/- 0.26, N = 3111.29111.50111.59112.09

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streambdca714212835SE +/- 0.02, N = 330.2830.3230.4530.49

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streambdca510152025SE +/- 0.05, N = 321.4721.6721.6921.73

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streambcda70140210280350SE +/- 0.44, N = 3333.37333.64334.64335.35

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambdca20406080100SE +/- 0.14, N = 375.5175.7175.9976.14

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamdbca612182430SE +/- 0.03, N = 326.5426.6726.7126.91

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streambdca510152025SE +/- 0.01, N = 318.4018.4418.4618.47

CacheBench

This is a performance test of CacheBench, which is part of LLCbench. CacheBench is designed to test the memory and cache bandwidth performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Readcbad2K4K6K8K10KSE +/- 0.09, N = 311543.1011543.1611543.3711543.49MIN: 11542.7 / MAX: 11543.41MIN: 11542.65 / MAX: 11544.48MIN: 11542.37 / MAX: 11544.55MIN: 11542.8 / MAX: 11544.641. (CC) gcc options: -O3 -lrt

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Writeabdc15K30K45K60K75KSE +/- 3.29, N = 369134.6869140.5369142.1969142.44MIN: 68881.15 / MAX: 69208.76MIN: 68883.98 / MAX: 69225.86MIN: 68886.61 / MAX: 69217.36MIN: 68884.8 / MAX: 69218.231. (CC) gcc options: -O3 -lrt

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Read / Modify / Writebcda30K60K90K120K150KSE +/- 386.79, N = 3130069.85130806.25130851.31130857.58MIN: 101861.72 / MAX: 137133.31MIN: 112724.52 / MAX: 137125.96MIN: 112492.8 / MAX: 137124.99MIN: 112608.55 / MAX: 137126.281. (CC) gcc options: -O3 -lrt

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Compression Speedacbd2004006008001000SE +/- 0.63, N = 3828.78829.15829.36830.371. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Decompression Speedadbc11002200330044005500SE +/- 1.42, N = 35019.55019.55020.05023.21. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Compression Speedbacd306090120150SE +/- 0.30, N = 3131.10131.24131.40131.611. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Decompression Speedadbc10002000300040005000SE +/- 0.63, N = 34595.94596.74597.94598.01. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Compression Speedabdc1020304050SE +/- 0.02, N = 344.2844.4844.5245.491. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Decompression Speedabcd10002000300040005000SE +/- 1.12, N = 34840.54841.44842.44844.51. (CC) gcc options: -O3

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLASadbc50100150200250SE +/- 0.33, N = 31732132192251. (CXX) g++ options: -flto -pthread

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigenabdc306090120150SE +/- 2.08, N = 31211461511541. (CXX) g++ options: -flto -pthread

Speedb

Speedb is a next-generation key value storage engine that is RocksDB compatible and aiming for stability, efficiency, and performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fillbdca120K240K360K480K600KSE +/- 4227.88, N = 35549975566755573485583301. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Readcdba30M60M90M120M150MSE +/- 81483.06, N = 31462857381464730361474322141481348481. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Update Randomdbca90K180K270K360K450KSE +/- 4060.59, N = 34174574188484237884316921. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Sequential Fillcdba130K260K390K520K650KSE +/- 3239.87, N = 36047586124286187766206071. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fill Syncdcab10K20K30K40K50KSE +/- 66.17, N = 3472674737347488477081. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read While Writingdacb1.5M3M4.5M6M7.5MSE +/- 60887.57, N = 368960077004007704750270704071. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read Random Write Randombdca500K1000K1500K2000K2500KSE +/- 1258.96, N = 323076862316804232067023279111. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Llama.cpp

Llama.cpp is a port of Facebook's LLaMA model in C/C++ developed by Georgi Gerganov. Llama.cpp allows the inference of LLaMA and other supported models in C/C++. For CPU inference Llama.cpp supports AVX2/AVX-512, ARM NEON, and other modern ISAs along with features like OpenBLAS usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-7b.Q4_0.ggufdcab510152025SE +/- 0.24, N = 420.6820.7420.7620.951. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-13b.Q4_0.ggufdcba3691215SE +/- 0.06, N = 311.2511.2711.3211.641. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-70b-chat.Q5_0.ggufabcd0.43880.87761.31641.75522.194SE +/- 0.00, N = 31.941.941.951.951. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: llava-v1.5-7b-q4 - Acceleration: CPUadbc48121620SE +/- 0.01, N = 317.2217.2517.2617.30

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPUadcb3691215SE +/- 0.01, N = 310.1310.1310.1410.15

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPUabcd0.73131.46262.19392.92523.6565SE +/- 0.00, N = 33.253.253.253.25

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamcdba100200300400500SE +/- 0.27, N = 3449.30449.16448.91446.63

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambcad1224364860SE +/- 0.02, N = 354.5454.4654.3754.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streambdca48121620SE +/- 0.02, N = 317.6017.5917.5417.50

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdacb1.18812.37623.56434.75245.9405SE +/- 0.0173, N = 35.28045.26245.17875.1753

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streambdca918273645SE +/- 0.01, N = 339.3339.1939.1239.04

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba246810SE +/- 0.0106, N = 36.43456.42666.42306.3518

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca246810SE +/- 0.0329, N = 36.10246.10106.07475.9507

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambdac0.29820.59640.89461.19281.491SE +/- 0.0024, N = 31.32521.31751.31751.3025

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streambcda20406080100SE +/- 0.20, N = 380.8580.5780.2779.89

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamabcd3691215SE +/- 0.01, N = 310.1410.1410.1310.12

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streambcda80160240320400SE +/- 0.27, N = 3369.77369.62369.53368.31

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamdbac1326395265SE +/- 0.07, N = 358.4158.3558.2558.00

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdbca918273645SE +/- 0.09, N = 339.9839.2639.1239.05

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdbca246810SE +/- 0.0037, N = 36.43466.42086.41786.3619

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca20406080100SE +/- 0.02, N = 380.0580.0579.8979.16

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamcbda3691215SE +/- 0.03, N = 310.1510.1210.1110.10

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streambdca1224364860SE +/- 0.03, N = 354.0653.8253.7453.47

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streambdca3691215SE +/- 0.0211, N = 38.97558.95868.95208.9109

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streambdca90180270360450SE +/- 0.41, N = 3394.78394.38393.83392.96

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streambdca1122334455SE +/- 0.12, N = 346.5546.1346.0946.00

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streambcda816243240SE +/- 0.05, N = 335.9735.9335.8435.76

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambdca3691215SE +/- 0.02, N = 313.2413.2013.1513.13

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamcbda100200300400500SE +/- 0.32, N = 3448.90448.04448.03445.26

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streambdca1224364860SE +/- 0.03, N = 354.3354.2054.1554.12

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Bacdb48121620SE +/- 0.01, N = 315.5515.5315.5015.50

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mbacd246810SE +/- 0.007, N = 37.3497.3257.3017.297

100 Results Shown

PyTorch:
  CPU - 1 - ResNet-50
  CPU - 16 - ResNet-50
  CPU - 256 - ResNet-50
Quicksilver:
  CTS2
  CORAL2 P1
  CORAL2 P2
rav1e:
  1
  5
  6
  10
SVT-AV1:
  Preset 4 - Bosphorus 4K
  Preset 8 - Bosphorus 4K
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
TensorFlow:
  CPU - 1 - VGG-16
  CPU - 1 - AlexNet
  CPU - 16 - VGG-16
  CPU - 16 - AlexNet
  CPU - 1 - GoogLeNet
  CPU - 1 - ResNet-50
  CPU - 16 - GoogLeNet
  CPU - 16 - ResNet-50
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
CacheBench:
  Read
  Write
  Read / Modify / Write
LZ4 Compression:
  1 - Compression Speed
  1 - Decompression Speed
  3 - Compression Speed
  3 - Decompression Speed
  9 - Compression Speed
  9 - Decompression Speed
LeelaChessZero:
  BLAS
  Eigen
Speedb:
  Rand Fill
  Rand Read
  Update Rand
  Seq Fill
  Rand Fill Sync
  Read While Writing
  Read Rand Write Rand
Llama.cpp:
  llama-2-7b.Q4_0.gguf
  llama-2-13b.Q4_0.gguf
  llama-2-70b-chat.Q5_0.gguf
Llamafile:
  llava-v1.5-7b-q4 - CPU
  mistral-7b-instruct-v0.2.Q8_0 - CPU
  wizardcoder-python-34b-v1.0.Q6_K - CPU
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
Y-Cruncher:
  1B
  500M