2024 year

AMD Ryzen Threadripper PRO 5965WX 24-Cores testing with a ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS) and ASUS NVIDIA NV106 2GB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2402040-NE-2024YEAR116
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
February 03
  1 Hour, 38 Minutes
b
February 04
  4 Hours, 50 Minutes
c
February 04
  1 Hour, 37 Minutes
d
February 04
  1 Hour, 34 Minutes
Invert Behavior (Only Show Selected Data)
  2 Hours, 25 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


2024 yearOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper PRO 5965WX 24-Cores @ 3.80GHz (24 Cores / 48 Threads)ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS)AMD Starship/Matisse8 x 16GB DDR4-2133MT/s Corsair CMK32GX4M2E3200C162048GB SOLIDIGM SSDPFKKW020X7ASUS NVIDIA NV106 2GBAMD Starship/MatisseVA24312 x Intel X550 + Intel Wi-Fi 6 AX200Ubuntu 23.106.5.0-13-generic (x86_64)GNOME Shell 45.0X Server + Waylandnouveau4.3 Mesa 23.2.1-1ubuntu3GCC 13.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen Resolution2024 Year BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa008205- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdResult OverviewPhoronix Test Suite100%107%114%122%129%LeelaChessZeroTensorFlowrav1eSpeedbPyTorchLlama.cppSVT-AV1Neural Magic DeepSparseLZ4 CompressionY-CruncherQuicksilverCacheBenchLlamafile

2024 yearlczero: BLASlczero: Eigenquicksilver: CTS2llama-cpp: llama-2-70b-chat.Q5_0.gguftensorflow: CPU - 16 - VGG-16quicksilver: CORAL2 P2cachebench: Readcachebench: Read / Modify / Writecachebench: Writetensorflow: CPU - 16 - ResNet-50llamafile: mistral-7b-instruct-v0.2.Q8_0 - CPUspeedb: Seq Fillrav1e: 1rav1e: 10deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamllamafile: wizardcoder-python-34b-v1.0.Q6_K - CPUpytorch: CPU - 256 - ResNet-50pytorch: CPU - 16 - ResNet-50speedb: Rand Fill Syncspeedb: Rand Fillspeedb: Update Randspeedb: Read While Writingspeedb: Read Rand Write Randspeedb: Rand Readrav1e: 5quicksilver: CORAL2 P1deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamtensorflow: CPU - 1 - VGG-16deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamllama-cpp: llama-2-13b.Q4_0.ggufdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamrav1e: 6deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamtensorflow: CPU - 16 - GoogLeNetpytorch: CPU - 1 - ResNet-50svt-av1: Preset 4 - Bosphorus 4Kcompress-lz4: 9 - Decompression Speedcompress-lz4: 9 - Compression Speedllama-cpp: llama-2-7b.Q4_0.ggufcompress-lz4: 3 - Decompression Speedcompress-lz4: 3 - Compression Speedcompress-lz4: 1 - Decompression Speedcompress-lz4: 1 - Compression Speedtensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - AlexNety-cruncher: 1Bllamafile: llava-v1.5-7b-q4 - CPUtensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 1 - GoogLeNetsvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080py-cruncher: 500Msvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pabcd173121206800001.948.512403000011543.372321130857.57756269134.68049819.8710.136206071.04410.634368.305132.518858.25417.161613.12976.13943.2531.9232.5047488558330431692700400723279111481348483.747242100005.2624189.909317.495685.1217446.631326.839435.762335.3479445.256526.911954.371618.387254.119418.47272.72392.958830.48945.997621.729653.4699224.180211.648.9109112.09145.95072012.20625.26179.8855150.042139.0436307.014679.1618151.466610.104698.91026.3518157.228639.0493306.991910.142498.5166.3619156.97011.3175757.163160.8540.686.6774840.544.2820.764595.9131.245019.5828.78100.446.2615.54517.228.859.9461.5318.8037.325190.916190.794122.948501.42543.554219146206466671.948.462402666711543.164687130069.84833869140.53099219.4510.156187761.04810.885369.772032.362158.349017.133713.238875.50673.2532.1532.1047708554997418848707040723076861474322143.791242300005.1753193.110617.5999681.0038448.907926.647835.9726333.3674448.040826.667254.536518.331754.334018.40002.70394.775930.280946.545321.474354.0612221.705311.328.9755111.28926.10101962.70475.29280.8465148.238839.3339304.771280.0470149.781810.121398.74566.4230155.483739.2555305.379510.136298.56356.4208155.54021.3252752.778460.1840.426.6694841.444.4820.954597.9131.105020.0829.36100.016.2315.49717.268.799.7461.83018.6827.349190.402192.726123.293506.596573.042225154206200001.958.482389000011543.096362130806.24568369142.43550319.6110.146047581.04410.957369.622832.421257.997817.237613.154575.98983.2531.5931.6547373557348423788704750223206701462857383.769242400005.1787192.980117.5377683.2461449.295626.674135.9278333.6358448.903126.70554.455418.358954.147418.46352.72393.834630.45146.091221.685353.7417223.051511.278.952111.58646.07471970.61065.28280.5729148.756139.1233306.502879.8946149.950710.14698.49796.4266155.40339.1181306.517510.127798.65266.4178155.61821.3025765.992360.0440.826.6784842.445.4920.744598131.45023.2829.15100.086.2315.53217.38.8516.4961.4718.4097.301192.157189.252122.95501.156580.467213151206000001.958.512384000011543.486939130851.3050769142.18885419.8110.136124281.05411.022369.5332.376258.409417.116213.20475.70733.2532.0732.2147267556675417457689600723168041464730363.891242900005.2804189.267317.5865681.5303449.160526.690235.837334.6424448.034926.543554.347118.395954.20418.44432.69394.375630.315946.133421.665553.8237222.723211.258.9586111.49656.10241962.15515.19180.2684149.268339.1902305.861480.052149.764710.106898.89126.4345155.201639.977299.829510.115198.76716.4346155.19261.3175757.271559.8240.356.6334844.544.5220.684596.7131.615019.5830.3799.96.2115.50117.258.899.7360.9518.9227.297192.683192.603122.616506.174565.906OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLASdcba50100150200250SE +/- 0.33, N = 32132252191731. (CXX) g++ options: -flto -pthread

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigendcba306090120150SE +/- 2.08, N = 31511541461211. (CXX) g++ options: -flto -pthread

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2dcba4M8M12M16M20MSE +/- 6666.67, N = 3206000002062000020646667206800001. (CXX) g++ options: -fopenmp -O3 -march=native

Llama.cpp

Llama.cpp is a port of Facebook's LLaMA model in C/C++ developed by Georgi Gerganov. Llama.cpp allows the inference of LLaMA and other supported models in C/C++. For CPU inference Llama.cpp supports AVX2/AVX-512, ARM NEON, and other modern ISAs along with features like OpenBLAS usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-70b-chat.Q5_0.ggufdcba0.43880.87761.31641.75522.194SE +/- 0.00, N = 31.951.951.941.941. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16dcba246810SE +/- 0.03, N = 38.518.488.468.51

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2dcba5M10M15M20M25MSE +/- 3333.33, N = 3238400002389000024026667240300001. (CXX) g++ options: -fopenmp -O3 -march=native

CacheBench

This is a performance test of CacheBench, which is part of LLCbench. CacheBench is designed to test the memory and cache bandwidth performance Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Readdcba2K4K6K8K10KSE +/- 0.09, N = 311543.4911543.1011543.1611543.37MIN: 11542.8 / MAX: 11544.64MIN: 11542.7 / MAX: 11543.41MIN: 11542.65 / MAX: 11544.48MIN: 11542.37 / MAX: 11544.551. (CC) gcc options: -O3 -lrt

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Read / Modify / Writedcba30K60K90K120K150KSE +/- 386.79, N = 3130851.31130806.25130069.85130857.58MIN: 112492.8 / MAX: 137124.99MIN: 112724.52 / MAX: 137125.96MIN: 101861.72 / MAX: 137133.31MIN: 112608.55 / MAX: 137126.281. (CC) gcc options: -O3 -lrt

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Writedcba15K30K45K60K75KSE +/- 3.29, N = 369142.1969142.4469140.5369134.68MIN: 68886.61 / MAX: 69217.36MIN: 68884.8 / MAX: 69218.23MIN: 68883.98 / MAX: 69225.86MIN: 68881.15 / MAX: 69208.761. (CC) gcc options: -O3 -lrt

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50dcba510152025SE +/- 0.08, N = 319.8119.6119.4519.87

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPUdcba3691215SE +/- 0.01, N = 310.1310.1410.1510.13

Speedb

Speedb is a next-generation key value storage engine that is RocksDB compatible and aiming for stability, efficiency, and performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Sequential Filldcba130K260K390K520K650KSE +/- 3239.87, N = 36124286047586187766206071. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

rav1e

Xiph rav1e is a Rust-written AV1 video encoder that claims to be the fastest and safest AV1 encoder. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 1dcba0.23720.47440.71160.94881.186SE +/- 0.004, N = 31.0541.0441.0481.044

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 10dcba3691215SE +/- 0.11, N = 511.0210.9610.8910.63

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamdcba80160240320400SE +/- 0.27, N = 3369.53369.62369.77368.31

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamdcba816243240SE +/- 0.05, N = 332.3832.4232.3632.52

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamdcba1326395265SE +/- 0.07, N = 358.4158.0058.3558.25

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamdcba48121620SE +/- 0.02, N = 317.1217.2417.1317.16

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamdcba3691215SE +/- 0.02, N = 313.2013.1513.2413.13

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamdcba20406080100SE +/- 0.14, N = 375.7175.9975.5176.14

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPUdcba0.73131.46262.19392.92523.6565SE +/- 0.00, N = 33.253.253.253.25

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50dcba714212835SE +/- 0.11, N = 332.0731.5932.1531.92MIN: 30.1 / MAX: 32.3MIN: 29.73 / MAX: 32.12MIN: 30.21 / MAX: 32.69MIN: 30 / MAX: 32.18

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50dcba816243240SE +/- 0.12, N = 332.2131.6532.1032.50MIN: 30.29 / MAX: 32.43MIN: 29.55 / MAX: 31.86MIN: 29.1 / MAX: 32.53MIN: 30.56 / MAX: 32.75

Speedb

Speedb is a next-generation key value storage engine that is RocksDB compatible and aiming for stability, efficiency, and performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fill Syncdcba10K20K30K40K50KSE +/- 66.17, N = 3472674737347708474881. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Filldcba120K240K360K480K600KSE +/- 4227.88, N = 35566755573485549975583301. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Update Randomdcba90K180K270K360K450KSE +/- 4060.59, N = 34174574237884188484316921. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read While Writingdcba1.5M3M4.5M6M7.5MSE +/- 60887.57, N = 368960077047502707040770040071. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read Random Write Randomdcba500K1000K1500K2000K2500KSE +/- 1258.96, N = 323168042320670230768623279111. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Readdcba30M60M90M120M150MSE +/- 81483.06, N = 31464730361462857381474322141481348481. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

rav1e

Xiph rav1e is a Rust-written AV1 video encoder that claims to be the fastest and safest AV1 encoder. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 5dcba0.87551.7512.62653.5024.3775SE +/- 0.014, N = 33.8913.7693.7913.747

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1dcba5M10M15M20M25MSE +/- 11547.01, N = 3242900002424000024230000242100001. (CXX) g++ options: -fopenmp -O3 -march=native

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdcba1.18812.37623.56434.75245.9405SE +/- 0.0173, N = 35.28045.17875.17535.2624

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdcba4080120160200SE +/- 0.65, N = 3189.27192.98193.11189.91

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba48121620SE +/- 0.02, N = 317.5917.5417.6017.50

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba150300450600750SE +/- 0.83, N = 3681.53683.25681.00685.12

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamdcba100200300400500SE +/- 0.27, N = 3449.16449.30448.91446.63

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamdcba612182430SE +/- 0.05, N = 326.6926.6726.6526.84

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba816243240SE +/- 0.05, N = 335.8435.9335.9735.76

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba70140210280350SE +/- 0.44, N = 3334.64333.64333.37335.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamdcba100200300400500SE +/- 0.32, N = 3448.03448.90448.04445.26

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamdcba612182430SE +/- 0.03, N = 326.5426.7126.6726.91

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdcba1224364860SE +/- 0.02, N = 354.3554.4654.5454.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.01, N = 318.4018.3618.3318.39

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba1224364860SE +/- 0.03, N = 354.2054.1554.3354.12

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.01, N = 318.4418.4618.4018.47

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16dcba0.6121.2241.8362.4483.06SE +/- 0.01, N = 32.692.722.702.72

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamdcba90180270360450SE +/- 0.41, N = 3394.38393.83394.78392.96

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamdcba714212835SE +/- 0.02, N = 330.3230.4530.2830.49

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.12, N = 346.1346.0946.5546.00

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.05, N = 321.6721.6921.4721.73

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamdcba1224364860SE +/- 0.03, N = 353.8253.7454.0653.47

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamdcba50100150200250SE +/- 0.12, N = 3222.72223.05221.71224.18

Llama.cpp

Llama.cpp is a port of Facebook's LLaMA model in C/C++ developed by Georgi Gerganov. Llama.cpp allows the inference of LLaMA and other supported models in C/C++. For CPU inference Llama.cpp supports AVX2/AVX-512, ARM NEON, and other modern ISAs along with features like OpenBLAS usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-13b.Q4_0.ggufdcba3691215SE +/- 0.06, N = 311.2511.2711.3211.641. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamdcba3691215SE +/- 0.0211, N = 38.95868.95208.97558.9109

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamdcba306090120150SE +/- 0.26, N = 3111.50111.59111.29112.09

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba246810SE +/- 0.0329, N = 36.10246.07476.10105.9507

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba400800120016002000SE +/- 10.49, N = 31962.161970.611962.702012.21

rav1e

Xiph rav1e is a Rust-written AV1 video encoder that claims to be the fastest and safest AV1 encoder. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 6dcba1.19072.38143.57214.76285.9535SE +/- 0.008, N = 35.1915.2825.2925.261

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamdcba20406080100SE +/- 0.20, N = 380.2780.5780.8579.89

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamdcba306090120150SE +/- 0.36, N = 3149.27148.76148.24150.04

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamdcba918273645SE +/- 0.01, N = 339.1939.1239.3339.04

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamdcba70140210280350SE +/- 0.13, N = 3305.86306.50304.77307.01

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba20406080100SE +/- 0.02, N = 380.0579.8980.0579.16

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba306090120150SE +/- 0.01, N = 3149.76149.95149.78151.47

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamdcba3691215SE +/- 0.03, N = 310.1110.1510.1210.10

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamdcba20406080100SE +/- 0.29, N = 398.8998.5098.7598.91

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba246810SE +/- 0.0106, N = 36.43456.42666.42306.3518

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba306090120150SE +/- 0.26, N = 3155.20155.40155.48157.23

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdcba918273645SE +/- 0.09, N = 339.9839.1239.2639.05

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdcba70140210280350SE +/- 0.76, N = 3299.83306.52305.38306.99

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamdcba3691215SE +/- 0.01, N = 310.1210.1310.1410.14

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamdcba20406080100SE +/- 0.09, N = 398.7798.6598.5698.52

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdcba246810SE +/- 0.0037, N = 36.43466.41786.42086.3619

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdcba306090120150SE +/- 0.08, N = 3155.19155.62155.54156.97

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamdcba0.29820.59640.89461.19281.491SE +/- 0.0024, N = 31.31751.30251.32521.3175

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamdcba170340510680850SE +/- 1.33, N = 3757.27765.99752.78757.16

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetdcba1428425670SE +/- 0.36, N = 359.8260.0460.1860.85

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50dcba918273645SE +/- 0.19, N = 340.3540.8240.4240.68MIN: 37.34 / MAX: 40.65MIN: 37.73 / MAX: 41.05MIN: 37.5 / MAX: 41MIN: 37.73 / MAX: 40.91

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kdcba246810SE +/- 0.015, N = 36.6336.6786.6696.6771. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Decompression Speeddcba10002000300040005000SE +/- 1.12, N = 34844.54842.44841.44840.51. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Compression Speeddcba1020304050SE +/- 0.02, N = 344.5245.4944.4844.281. (CC) gcc options: -O3

Llama.cpp

Llama.cpp is a port of Facebook's LLaMA model in C/C++ developed by Georgi Gerganov. Llama.cpp allows the inference of LLaMA and other supported models in C/C++. For CPU inference Llama.cpp supports AVX2/AVX-512, ARM NEON, and other modern ISAs along with features like OpenBLAS usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-7b.Q4_0.ggufdcba510152025SE +/- 0.24, N = 420.6820.7420.9520.761. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Decompression Speeddcba10002000300040005000SE +/- 0.63, N = 34596.74598.04597.94595.91. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Compression Speeddcba306090120150SE +/- 0.30, N = 3131.61131.40131.10131.241. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Decompression Speeddcba11002200330044005500SE +/- 1.42, N = 35019.55023.25020.05019.51. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Compression Speeddcba2004006008001000SE +/- 0.63, N = 3830.37829.15829.36828.781. (CC) gcc options: -O3

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetdcba20406080100SE +/- 0.20, N = 399.90100.08100.01100.44

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetdcba246810SE +/- 0.01, N = 36.216.236.236.26

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Bdcba48121620SE +/- 0.01, N = 315.5015.5315.5015.55

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: llava-v1.5-7b-q4 - Acceleration: CPUdcba48121620SE +/- 0.01, N = 317.2517.3017.2617.22

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50dcba246810SE +/- 0.05, N = 38.898.858.798.85

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetdcba48121620SE +/- 0.09, N = 39.7316.499.749.94

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kdcba1428425670SE +/- 0.07, N = 360.9561.4761.8361.531. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pdcba510152025SE +/- 0.08, N = 318.9218.4118.6818.801. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mdcba246810SE +/- 0.007, N = 37.2977.3017.3497.325

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kdcba4080120160200SE +/- 1.08, N = 3192.68192.16190.40190.921. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kdcba4080120160200SE +/- 0.80, N = 3192.60189.25192.73190.791. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pdcba306090120150SE +/- 0.59, N = 3122.62122.95123.29122.951. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pdcba110220330440550SE +/- 5.37, N = 5506.17501.16506.60501.421. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080pdcba130260390520650SE +/- 7.15, N = 3565.91580.47573.04543.551. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

100 Results Shown

LeelaChessZero:
  BLAS
  Eigen
Quicksilver
Llama.cpp
TensorFlow
Quicksilver
CacheBench:
  Read
  Read / Modify / Write
  Write
TensorFlow
Llamafile
Speedb
rav1e:
  1
  10
Neural Magic DeepSparse:
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
Llamafile
PyTorch:
  CPU - 256 - ResNet-50
  CPU - 16 - ResNet-50
Speedb:
  Rand Fill Sync
  Rand Fill
  Update Rand
  Read While Writing
  Read Rand Write Rand
  Rand Read
rav1e
Quicksilver
Neural Magic DeepSparse:
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
TensorFlow
Neural Magic DeepSparse:
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
    items/sec
Llama.cpp
Neural Magic DeepSparse:
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
rav1e
Neural Magic DeepSparse:
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
TensorFlow
PyTorch
SVT-AV1
LZ4 Compression:
  9 - Decompression Speed
  9 - Compression Speed
Llama.cpp
LZ4 Compression:
  3 - Decompression Speed
  3 - Compression Speed
  1 - Decompression Speed
  1 - Compression Speed
TensorFlow:
  CPU - 16 - AlexNet
  CPU - 1 - AlexNet
Y-Cruncher
Llamafile
TensorFlow:
  CPU - 1 - ResNet-50
  CPU - 1 - GoogLeNet
SVT-AV1:
  Preset 8 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
Y-Cruncher
SVT-AV1:
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p