dfhj

Apple M2 testing with a Apple MacBook Air (13 h M2 2022) and llvmpipe on Arch rolling via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2401107-NE-DFHJ8749984
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 09
  4 Hours, 1 Minute
b
January 09
  4 Hours
c
January 10
  3 Hours, 55 Minutes
Invert Behavior (Only Show Selected Data)
  3 Hours, 59 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


dfhjOpenBenchmarking.orgPhoronix Test SuiteApple M2 @ 2.42GHz (4 Cores / 8 Threads)Apple MacBook Air (13 h M2 2022)Apple Silicon8GB251GB APPLE SSD AP0256Z + 2 x 0GB APPLE SSD AP0256ZllvmpipeBroadcom Device 4433 + Broadcom BRCM4387 BluetoothArch rolling6.3.0-asahi-13-1-ARCH (aarch64)KDE Plasma 5.27.6X Server 1.21.1.84.5 Mesa 23.1.3 (LLVM 15.0.7 128 bits)GCC 12.1.0 + Clang 15.0.7ext42560x1600ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionDfhj BenchmarksSystem Logs- --build=aarch64-unknown-linux-gnu --disable-libssp --disable-libstdcxx-pch --disable-multilib --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-fix-cortex-a53-835769 --enable-fix-cortex-a53-843419 --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=c,c++,fortran,go,lto,objc,obj-c++ --enable-lto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-unknown-linux-gnu --mandir=/usr/share/man --with-arch=armv8-a --with-linker-hash-style=gnu - Scaling Governor: apple-cpufreq schedutil (Boost: Enabled)- Python 3.11.3- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%103%106%109%112%XmrigNeural Magic DeepSparseQuicksilverrav1eLeelaChessZeroPyTorch

dfhjlczero: Eigenquicksilver: CTS2quicksilver: CORAL2 P1quicksilver: CORAL2 P2xmrig: KawPow - 1Mxmrig: Monero - 1Mxmrig: Wownero - 1Mxmrig: GhostRider - 1Mxmrig: CryptoNight-Heavy - 1Mxmrig: CryptoNight-Femto UPX2 - 1Mrav1e: 1rav1e: 5rav1e: 6rav1e: 10pytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_ldeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamabc434330000483200077200002232.72168.22437.7505.52319.22134.60.5533.1574.17511.7956.303.104.792.320.561.511.37211452.625754.866936.430920.987795.2178190.645110.47319.2739215.4125444310000479100076860002169.42128.42391.3505.42302.62179.50.5523.144.19711.8976.263.154.822.390.571.501.52681306.107161.023132.738423.179886.2084212.76119.38410.2386194.8216434500000509400084400002515.62484.22746.9504.324942553.10.6123.3724.45612.0166.293.114.852.280.561.511.51151320.485559.660533.498122.712987.8802207.84819.606310.039198.874OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

Backend: BLAS

a: The test quit with a non-zero exit status.

b: The test quit with a non-zero exit status.

c: The test quit with a non-zero exit status.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigenabc10203040504344431. (CXX) g++ options: -flto -pthread

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2abc1000K2000K3000K4000K5000K4330000431000045000001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1abc1.1M2.2M3.3M4.4M5.5M4832000479100050940001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2abc2M4M6M8M10M7720000768600084400001. (CXX) g++ options: -fopenmp -O3 -march=native

Xmrig

Xmrig is an open-source cross-platform CPU/GPU miner for RandomX, KawPow, CryptoNight and AstroBWT. This test profile is setup to measure the Xmrig CPU mining performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: KawPow - Hash Count: 1Mabc50010001500200025002232.72169.42515.61. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Monero - Hash Count: 1Mabc50010001500200025002168.22128.42484.21. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Wownero - Hash Count: 1Mabc60012001800240030002437.72391.32746.91. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: GhostRider - Hash Count: 1Mabc110220330440550505.5505.4504.31. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Heavy - Hash Count: 1Mabc50010001500200025002319.22302.62494.01. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Femto UPX2 - Hash Count: 1Mabc50010001500200025002134.62179.52553.11. (CXX) g++ options: -fexceptions -fno-rtti -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

rav1e

Xiph rav1e is a Rust-written AV1 video encoder that claims to be the fastest and safest AV1 encoder. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 1abc0.13770.27540.41310.55080.68850.5530.5520.612

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 5abc0.75871.51742.27613.03483.79353.1573.1403.372

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 6abc1.00262.00523.00784.01045.0134.1754.1974.456

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 10abc369121511.8011.9012.02

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50abc2468106.306.266.29MIN: 4.73 / MAX: 6.86MIN: 5.68 / MAX: 6.79MIN: 5.79 / MAX: 6.78

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abc0.70881.41762.12642.83523.5443.103.153.11MIN: 2.5 / MAX: 3.53MIN: 2.54 / MAX: 3.61MIN: 2.77 / MAX: 3.51

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50abc1.09132.18263.27394.36525.45654.794.824.85MIN: 3.74 / MAX: 5.16MIN: 4.38 / MAX: 5.12MIN: 4.45 / MAX: 5.22

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152abc0.53781.07561.61342.15122.6892.322.392.28MIN: 1.85 / MAX: 2.46MIN: 1.95 / MAX: 2.56MIN: 2.07 / MAX: 2.43

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_labc0.12830.25660.38490.51320.64150.560.570.56MIN: 0.28 / MAX: 1MIN: 0.39 / MAX: 1.01MIN: 0.33 / MAX: 0.99

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_labc0.33980.67961.01941.35921.6991.511.501.51MIN: 1.34 / MAX: 1.59MIN: 1.35 / MAX: 1.58MIN: 1.44 / MAX: 1.58

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamabc0.34350.6871.03051.3741.71751.37211.52681.5115

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamabc300600900120015001452.631306.111320.49

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc142842567054.8761.0259.66

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc81624324036.4332.7433.50

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamabc61218243020.9923.1822.71

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamabc2040608010095.2286.2187.88

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc50100150200250190.65212.76207.85

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc369121510.47319.38409.6063

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamabc36912159.273910.238610.0390

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamabc50100150200250215.41194.82198.87

30 Results Shown

LeelaChessZero
Quicksilver:
  CTS2
  CORAL2 P1
  CORAL2 P2
Xmrig:
  KawPow - 1M
  Monero - 1M
  Wownero - 1M
  GhostRider - 1M
  CryptoNight-Heavy - 1M
  CryptoNight-Femto UPX2 - 1M
rav1e:
  1
  5
  6
  10
PyTorch:
  CPU - 1 - ResNet-50
  CPU - 1 - ResNet-152
  CPU - 16 - ResNet-50
  CPU - 16 - ResNet-152
  CPU - 1 - Efficientnet_v2_l
  CPU - 16 - Efficientnet_v2_l
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    items/sec
    ms/batch