dgk

Intel Core i7-1185G7 testing with a Dell 0DXP1F (3.7.0 BIOS) and Intel Xe TGL GT2 15GB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2401087-NE-DGK61774740
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

HPC - High Performance Computing 2 Tests
Machine Learning 2 Tests
Python Tests 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
s
January 08
  1 Hour, 24 Minutes
b
January 08
  1 Hour, 25 Minutes
c
January 08
  1 Hour, 24 Minutes
Invert Hiding All Results Option
  1 Hour, 24 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


dgkOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-1185G7 @ 4.80GHz (4 Cores / 8 Threads)Dell 0DXP1F (3.7.0 BIOS)Intel Tiger Lake-LP16GBMicron 2300 NVMe 512GBIntel Xe TGL GT2 15GB (1350MHz)Realtek ALC289Intel Wi-Fi 6 AX201Ubuntu 23.106.7.0-060700rc5-generic (x86_64)GNOME Shell 45.1X Server + Wayland4.6 Mesa 24.0~git2312220600.68c53e~oibaf~m (git-68c53ec 2023-12-22 mantic-oibaf-ppa)OpenCL 3.0GCC 13.2.0ext41920x1200ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLOpenCLCompilerFile-SystemScreen ResolutionDgk BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xb4 - Thermald 2.5.4- Python 3.11.6- gather_data_sampling: Mitigation of Microcode + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected

sbcResult OverviewPhoronix Test Suite100%101%102%103%104%SpeedbQuicksilverPyTorchY-CruncherTensorFlowProjectPhysX OpenCL-Benchmark

dgkquicksilver: CTS2quicksilver: CORAL2 P2tensorflow: CPU - 16 - VGG-16pytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 16 - ResNet-152quicksilver: CORAL2 P1tensorflow: CPU - 16 - ResNet-50pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - ResNet-50pytorch: CPU - 1 - ResNet-152y-cruncher: 1Bspeedb: Rand Fill Syncspeedb: Read While Writingspeedb: Rand Fillspeedb: Update Randspeedb: Read Rand Write Randspeedb: Rand Readtensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 1 - VGG-16opencl-benchmark: Memory Bandwidth Coalesced Writeopencl-benchmark: Memory Bandwidth Coalesced Readopencl-benchmark: INT8 Computeopencl-benchmark: INT16 Computeopencl-benchmark: INT32 Computeopencl-benchmark: INT64 Computeopencl-benchmark: FP16 Computeopencl-benchmark: FP32 Computepytorch: CPU - 1 - ResNet-50tensorflow: CPU - 16 - AlexNety-cruncher: 500Mtensorflow: CPU - 1 - ResNet-50speedb: Seq Filltensorflow: CPU - 1 - AlexNettensorflow: CPU - 1 - GoogLeNetsbc421600079350003.344.255.6743300009.697.8714.1310.1060.60961379245884693493138627984281493506730.94261.4659.371.3136.780.6350.133.2321.7525.0646.9127.048.351540513.0824.66412900079420003.344.245.7642410009.677.5214.0510.1060.6458348910134571773110477842391456054030.45261.359.481.3146.7810.6340.1313.2351.75124.9647.3827.2128.2846562513.0524.93418100079000003.344.215.7042920009.677.5514.1110.0260.79560689299024495903112587944611486369831.022.0261.3159.41.3166.7830.6350.133.2361.75124.8747.1927.0518.2546833813.0824.82OpenBenchmarking.org

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2scb900K1800K2700K3600K4500K4216000418100041290001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2scb2M4M6M8M10M7935000790000079420001. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16scb0.75151.5032.25453.0063.75753.343.343.34

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lscb0.95631.91262.86893.82524.78154.254.214.24MIN: 3.56 / MAX: 4.3MIN: 3.54 / MAX: 4.28MIN: 3.32 / MAX: 4.31

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152scb1.2962.5923.8885.1846.485.675.705.76MIN: 5.16 / MAX: 5.74MIN: 4.8 / MAX: 5.78MIN: 5.4 / MAX: 5.82

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1scb900K1800K2700K3600K4500K4330000429200042410001. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50scb36912159.699.679.67

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lscb2468107.877.557.52MIN: 6.49 / MAX: 9.17MIN: 7.02 / MAX: 7.63MIN: 6.56 / MAX: 7.61

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50scb4812162014.1314.1114.05MIN: 11.51 / MAX: 14.32MIN: 12.28 / MAX: 14.29MIN: 11.43 / MAX: 14.28

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152scb369121510.1010.0210.10MIN: 7.91 / MAX: 10.25MIN: 7.24 / MAX: 10.13MIN: 7.98 / MAX: 10.23

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Bscb142842567060.6160.8060.64

Speedb

Speedb is a next-generation key value storage engine that is RocksDB compatible and aiming for stability, efficiency, and performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fill Syncscb130026003900520065006137606858341. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read While Writingscb200K400K600K800K1000K9245889299028910131. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fillscb100K200K300K400K500K4693494495904571771. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Update Randomscb70K140K210K280K350K3138623112583110471. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read Random Write Randomscb200K400K600K800K1000K7984287944617842391. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Readscb3M6M9M12M15M1493506714863698145605401. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetscb71421283530.9431.0230.45

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16scb0.45450.9091.36351.8182.27252.002.022.00

ProjectPhysX OpenCL-Benchmark

ProjectPhysX OpenCL-Benchmark provides various OpenCL compute and memory bandwidth micro-benchmarks Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced Writescb142842567061.4661.3161.301. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced Readscb132639526559.3759.4059.481. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT8 Computescb0.29610.59220.88831.18441.48051.3131.3161.3141. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT16 Computescb2468106.7806.7836.7811. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT32 Computescb0.14290.28580.42870.57160.71450.6350.6350.6341. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT64 Computescb0.02950.0590.08850.1180.14750.1300.1300.1311. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP16 Computescb0.72811.45622.18432.91243.64053.2323.2363.2351. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP32 Computescb0.3940.7881.1821.5761.971.7501.7511.7511. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50scb61218243025.0624.8724.96MIN: 19.35 / MAX: 25.39MIN: 20.27 / MAX: 25.16MIN: 19.76 / MAX: 25.3

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetscb112233445546.9147.1947.38

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mscb61218243027.0427.0527.21

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50scb2468108.308.258.28

Speedb

Speedb is a next-generation key value storage engine that is RocksDB compatible and aiming for stability, efficiency, and performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Sequential Fillscb110K220K330K440K550K5154054683384656251. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetscb369121513.0813.0813.05

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetscb61218243024.6624.8224.93