tgldec

Tests for a future article. Intel Core i7-1185G7 testing with a Dell 0DXP1F (3.7.0 BIOS) and Intel Xe TGL GT2 15GB on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2312224-PTS-TGLDEC9288
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
December 22 2023
  2 Hours, 1 Minute
b
December 22 2023
  1 Hour, 57 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 59 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


tgldecOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-1185G7 @ 4.80GHz (4 Cores / 8 Threads)Dell 0DXP1F (3.7.0 BIOS)Intel Tiger Lake-LP16GBMicron 2300 NVMe 512GBIntel Xe TGL GT2 15GB (1350MHz)Realtek ALC289Intel Wi-Fi 6 AX201Ubuntu 22.046.2.0-36-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.0.1OpenCL 3.01.3.204GCC 11.4.0ext41920x1200ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLOpenCLVulkanCompilerFile-SystemScreen ResolutionTgldec BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xb4 - Thermald 2.4.9 - OpenJDK Runtime Environment (build 11.0.20.1+1-post-Ubuntu-0ubuntu122.04) - Python 3.10.12- gather_data_sampling: Mitigation of Microcode + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+3.6%+3.6%+7.2%+7.2%+10.8%+10.8%+14.4%+14.4%14.5%11.2%9.3%7.2%5.7%5.7%2.9%2.9%2.2%2%Preset 12 - Bosphorus 1080pPreset 8 - Bosphorus 1080pGhostRider - 1MWritesC.D.Y.C - A.M.SC.D.Y.C - A.M.SPreset 12 - Bosphorus 4K3.8%C.D.Y.C.S.I - A.M.SC.D.Y.C.S.I - A.M.SPreset 4 - Bosphorus 1080pN.T.C.B.b.u.c - A.M.S2.2%N.T.C.D.m - A.M.S2.1%N.T.C.D.m - A.M.S2%EigenSVT-AV1SVT-AV1XmrigScyllaDBNeural Magic DeepSparseNeural Magic DeepSparseSVT-AV1Neural Magic DeepSparseNeural Magic DeepSparseSVT-AV1Neural Magic DeepSparseNeural Magic DeepSparseNeural Magic DeepSparseLeelaChessZeroab

tgldeclczero: BLASlczero: Eigenxmrig: KawPow - 1Mxmrig: Monero - 1Mxmrig: Wownero - 1Mxmrig: GhostRider - 1Mxmrig: CryptoNight-Heavy - 1Mxmrig: CryptoNight-Femto UPX2 - 1Msvt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamscylladb: Writesab61511908.51904.92646.2405.31921.11902.61.38211.35243.02943.9445.33237.936194.342287.0193.9165510.1389127.08315.702854.452336.6899307.92296.46722.176290.14334.3093463.892354.210636.857222.28589.718729.97366.66046.6146302.313455.542535.96363.7221537.27674292062521911.11912.92647.7443.11913.41907.91.37611.35941.46944.4225.44942.174222.463285.6773.8826514.3343126.749615.745654.500536.6402307.50556.47623.440685.28184.3051461.799953.770937.162522.934487.175429.369668.00286.62302.0755.302636.10243.6422544.873746001OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLASab142842567061621. (CXX) g++ options: -flto -pthread

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigenab122436486051521. (CXX) g++ options: -flto -pthread

Xmrig

Xmrig is an open-source cross-platform CPU/GPU miner for RandomX, KawPow, CryptoNight and AstroBWT. This test profile is setup to measure the Xmrig CPU mining performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: KawPow - Hash Count: 1Mab4008001200160020001908.51911.11. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Monero - Hash Count: 1Mab4008001200160020001904.91912.91. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: Wownero - Hash Count: 1Mab60012001800240030002646.22647.71. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: GhostRider - Hash Count: 1Mab100200300400500405.3443.11. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Heavy - Hash Count: 1Mba4008001200160020001913.41921.11. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

OpenBenchmarking.orgH/s, More Is BetterXmrig 6.21Variant: CryptoNight-Femto UPX2 - Hash Count: 1Mab4008001200160020001902.61907.91. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kba0.3110.6220.9331.2441.5551.3761.3821. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kab369121511.3511.361. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kba102030405041.4743.031. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kab102030405043.9444.421. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pab1.2262.4523.6784.9046.135.3325.4491. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pab102030405037.9442.171. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pab50100150200250194.34222.461. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080pba60120180240300285.68287.021. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba0.88121.76242.64363.52484.4063.88263.9165

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamba110220330440550514.33510.14

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba306090120150126.75127.08

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamba4812162015.7515.70

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamab122436486054.4554.50

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamab81624324036.6936.64

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba70140210280350307.51307.92

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamba2468106.4766.467

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamab61218243022.1823.44

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamab2040608010090.1485.28

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamba0.96961.93922.90883.87844.8484.30514.3093

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamab100200300400500463.89461.80

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba122436486053.7754.21

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamba91827364537.1636.86

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamab51015202522.2922.93

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamab2040608010089.7287.18

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba71421283529.3729.97

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamba153045607568.0066.66

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamab2468106.61466.6200

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamab70140210280350302.31302.07

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba122436486055.3055.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamba81624324036.1035.96

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba0.83751.6752.51253.354.18753.64223.7221

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamba120240360480600544.87537.28

ScyllaDB

This is a benchmark of ScyllaDB and is making use of Apache Cassandra's cassandra-stress for conducting the benchmark. ScyllaDB is an open-source distributed NoSQL data store that is compatible with Apache Cassandra while focusing on higher throughput and lower latency. ScyllaDB uses a sharded design on each node. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterScyllaDB 5.2.9Test: Writesab10K20K30K40K50K4292046001

41 Results Shown

LeelaChessZero:
  BLAS
  Eigen
Xmrig:
  KawPow - 1M
  Monero - 1M
  Wownero - 1M
  GhostRider - 1M
  CryptoNight-Heavy - 1M
  CryptoNight-Femto UPX2 - 1M
SVT-AV1:
  Preset 4 - Bosphorus 4K
  Preset 8 - Bosphorus 4K
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
ScyllaDB