ai

AMD Ryzen 7 7840U testing with a Framework FRANMDCP07 (03.03 BIOS) and AMD Phoenix1 512MB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2312167-NE-AI239537207
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Ryzen 7 7840U
December 16 2023
  6 Hours, 42 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


aiOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 7 7840U @ 5.13GHz (8 Cores / 16 Threads)Framework FRANMDCP07 (03.03 BIOS)AMD Device 14e816GB512GB Western Digital WD PC SN740 SDDPNQD-512GAMD Phoenix1 512MB (2700/2800MHz)AMD Rembrandt Radeon HD AudioMEDIATEK MT7922 802.11ax PCIUbuntu 23.106.7.0-060700rc5-generic (x86_64)GNOME Shell 45.1X Server 1.21.1.7 + Wayland4.6 Mesa 23.2.1-1ubuntu3.1 (LLVM 15.0.7 DRM 3.56)GCC 13.2.0ext42256x1504ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionAi BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate-epp powersave (EPP: performance) - Platform Profile: balanced - CPU Microcode: 0xa704103 - ACPI Profile: balanced - Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Vulnerable: Safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

aiscikit-learn: Isolation Forestncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetscikit-learn: TSNE MNIST Datasetnumenta-nab: KNN CADopencv: DNN - Deep Neural Networkopencv: Object Detectionscikit-learn: SGD Regressionnumenta-nab: Bayesian Changepointnumenta-nab: Earthgecko Skylinestargate: 192000 - 1024opencv: Corescikit-learn: Hist Gradient Boostingscikit-learn: MNIST Datasetpyhpc: CPU - Numpy - 4194304 - Isoneutral Mixingstargate: 96000 - 1024scikit-learn: Hist Gradient Boosting Adultscikit-learn: 20 Newsgroups / Logistic Regressionstargate: 480000 - 1024stargate: 44100 - 1024numenta-nab: Contextual Anomaly Detector OSEpyhpc: CPU - Numpy - 4194304 - Equation of Staternnoise: numenta-nab: Relative Entropynumenta-nab: Windowed Gaussianai-benchmark: Ryzen 7 7840U223.4742.9266.986.057.8717.2113.205.735.8641.128.270.794.002.562.292.682.9910.54219.823234.008364873435596.58425.36689.0491.5067669941471.12255.6281.4522.28246649.65334.8433.0903163.12355235.2280.98915.13911.6776.954OpenBenchmarking.org

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isolation ForestRyzen 7 7840U50100150200250SE +/- 0.47, N = 3223.471. (F9X) gfortran options: -O0

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetRyzen 7 7840U0.6571.3141.9712.6283.285SE +/- 0.03, N = 142.92MIN: 2.53 / MAX: 14.811. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerRyzen 7 7840U1530456075SE +/- 0.06, N = 1566.98MIN: 63.99 / MAX: 105.51. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mRyzen 7 7840U246810SE +/- 0.03, N = 156.05MIN: 5.45 / MAX: 18.141. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdRyzen 7 7840U246810SE +/- 0.13, N = 157.87MIN: 6.63 / MAX: 40.311. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyRyzen 7 7840U48121620SE +/- 0.18, N = 1517.21MIN: 15.85 / MAX: 32.091. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50Ryzen 7 7840U3691215SE +/- 0.19, N = 1513.20MIN: 10.88 / MAX: 39.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetRyzen 7 7840U1.28932.57863.86795.15726.4465SE +/- 0.07, N = 155.73MIN: 4.95 / MAX: 17.881. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18Ryzen 7 7840U1.31852.6373.95555.2746.5925SE +/- 0.10, N = 155.86MIN: 5.14 / MAX: 18.931. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16Ryzen 7 7840U918273645SE +/- 0.18, N = 1541.12MIN: 38.67 / MAX: 68.321. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetRyzen 7 7840U246810SE +/- 0.14, N = 158.27MIN: 7.08 / MAX: 53.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefaceRyzen 7 7840U0.17780.35560.53340.71120.889SE +/- 0.01, N = 150.79MIN: 0.74 / MAX: 2.881. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0Ryzen 7 7840U0.91.82.73.64.5SE +/- 0.02, N = 154.00MIN: 3.55 / MAX: 15.961. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetRyzen 7 7840U0.5761.1521.7282.3042.88SE +/- 0.02, N = 152.56MIN: 2.27 / MAX: 15.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2Ryzen 7 7840U0.51531.03061.54592.06122.5765SE +/- 0.01, N = 152.29MIN: 2.07 / MAX: 27.161. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3Ryzen 7 7840U0.6031.2061.8092.4123.015SE +/- 0.01, N = 152.68MIN: 2.38 / MAX: 13.631. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2Ryzen 7 7840U0.67281.34562.01842.69123.364SE +/- 0.01, N = 152.99MIN: 2.59 / MAX: 14.021. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetRyzen 7 7840U3691215SE +/- 0.08, N = 1510.54MIN: 9.52 / MAX: 23.751. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST DatasetRyzen 7 7840U50100150200250SE +/- 0.32, N = 3219.821. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADRyzen 7 7840U50100150200250SE +/- 2.15, N = 3234.01

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural NetworkRyzen 7 7840U8K16K24K32K40KSE +/- 282.92, N = 15364871. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Object DetectionRyzen 7 7840U7K14K21K28K35KSE +/- 560.55, N = 12343551. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD RegressionRyzen 7 7840U20406080100SE +/- 0.05, N = 396.581. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointRyzen 7 7840U612182430SE +/- 0.25, N = 1525.37

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineRyzen 7 7840U20406080100SE +/- 1.10, N = 489.05

Stargate Digital Audio Workstation

Stargate is an open-source, cross-platform digital audio workstation (DAW) software package with "a unique and carefully curated experience" with scalability from old systems up through modern multi-core systems. Stargate is GPLv3 licensed and makes use of Qt5 (PyQt5) for its user-interface. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgRender Ratio, More Is BetterStargate Digital Audio Workstation 22.11.5Sample Rate: 192000 - Buffer Size: 1024Ryzen 7 7840U0.3390.6781.0171.3561.695SE +/- 0.007666, N = 31.5067661. (CXX) g++ options: -lpthread -lsndfile -lm -O3 -march=native -ffast-math -funroll-loops -fstrength-reduce -fstrict-aliasing -finline-functions

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: CoreRyzen 7 7840U20K40K60K80K100KSE +/- 290.67, N = 3994141. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient BoostingRyzen 7 7840U1632486480SE +/- 0.43, N = 371.121. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST DatasetRyzen 7 7840U1224364860SE +/- 0.04, N = 355.631. (F9X) gfortran options: -O0

PyHPC Benchmarks

PyHPC-Benchmarks is a suite of Python high performance computing benchmarks for execution on CPUs and GPUs using various popular Python HPC libraries. The PyHPC CPU-based benchmarks focus on sequential CPU performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPyHPC Benchmarks 3.0Device: CPU - Backend: Numpy - Project Size: 4194304 - Benchmark: Isoneutral MixingRyzen 7 7840U0.32670.65340.98011.30681.6335SE +/- 0.005, N = 31.452

Stargate Digital Audio Workstation

Stargate is an open-source, cross-platform digital audio workstation (DAW) software package with "a unique and carefully curated experience" with scalability from old systems up through modern multi-core systems. Stargate is GPLv3 licensed and makes use of Qt5 (PyQt5) for its user-interface. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgRender Ratio, More Is BetterStargate Digital Audio Workstation 22.11.5Sample Rate: 96000 - Buffer Size: 1024Ryzen 7 7840U0.51361.02721.54082.05442.568SE +/- 0.010681, N = 32.2824661. (CXX) g++ options: -lpthread -lsndfile -lm -O3 -march=native -ffast-math -funroll-loops -fstrength-reduce -fstrict-aliasing -finline-functions

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting AdultRyzen 7 7840U1122334455SE +/- 0.17, N = 349.651. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic RegressionRyzen 7 7840U816243240SE +/- 0.06, N = 334.841. (F9X) gfortran options: -O0

Stargate Digital Audio Workstation

Stargate is an open-source, cross-platform digital audio workstation (DAW) software package with "a unique and carefully curated experience" with scalability from old systems up through modern multi-core systems. Stargate is GPLv3 licensed and makes use of Qt5 (PyQt5) for its user-interface. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgRender Ratio, More Is BetterStargate Digital Audio Workstation 22.11.5Sample Rate: 480000 - Buffer Size: 1024Ryzen 7 7840U0.69531.39062.08592.78123.4765SE +/- 0.012252, N = 33.0903161. (CXX) g++ options: -lpthread -lsndfile -lm -O3 -march=native -ffast-math -funroll-loops -fstrength-reduce -fstrict-aliasing -finline-functions

OpenBenchmarking.orgRender Ratio, More Is BetterStargate Digital Audio Workstation 22.11.5Sample Rate: 44100 - Buffer Size: 1024Ryzen 7 7840U0.70281.40562.10842.81123.514SE +/- 0.032515, N = 33.1235521. (CXX) g++ options: -lpthread -lsndfile -lm -O3 -march=native -ffast-math -funroll-loops -fstrength-reduce -fstrict-aliasing -finline-functions

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSERyzen 7 7840U816243240SE +/- 0.14, N = 335.23

PyHPC Benchmarks

PyHPC-Benchmarks is a suite of Python high performance computing benchmarks for execution on CPUs and GPUs using various popular Python HPC libraries. The PyHPC CPU-based benchmarks focus on sequential CPU performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPyHPC Benchmarks 3.0Device: CPU - Backend: Numpy - Project Size: 4194304 - Benchmark: Equation of StateRyzen 7 7840U0.22250.4450.66750.891.1125SE +/- 0.003, N = 30.989

RNNoise

RNNoise is a recurrent neural network for audio noise reduction developed by Mozilla and Xiph.Org. This test profile is a single-threaded test measuring the time to denoise a sample 26 minute long 16-bit RAW audio file using this recurrent neural network noise suppression library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28Ryzen 7 7840U48121620SE +/- 0.05, N = 415.141. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyRyzen 7 7840U3691215SE +/- 0.07, N = 411.68

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianRyzen 7 7840U246810SE +/- 0.047, N = 66.954

spaCy

The spaCy library is an open-source solution for advanced neural language processing (NLP). The spaCy library leverages Python and is a leading neural language processing solution. This test profile times the spaCy CPU performance with various models. Learn more via the OpenBenchmarking.org test page.

Ryzen 7 7840U: The test quit with a non-zero exit status. E: ValueError: 'in' is not a valid parameter name

PyHPC Benchmarks

PyHPC-Benchmarks is a suite of Python high performance computing benchmarks for execution on CPUs and GPUs using various popular Python HPC libraries. The PyHPC CPU-based benchmarks focus on sequential CPU performance. Learn more via the OpenBenchmarking.org test page.

Device: CPU - Backend: PyTorch - Project Size: 4194304 - Benchmark: Isoneutral Mixing

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: Aesara - Project Size: 4194304 - Benchmark: Isoneutral Mixing

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: Numba - Project Size: 4194304 - Benchmark: Equation of State

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: TensorFlow - Project Size: 4194304 - Benchmark: Isoneutral Mixing

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: TensorFlow - Project Size: 4194304 - Benchmark: Equation of State

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: PyTorch - Project Size: 4194304 - Benchmark: Equation of State

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: Aesara - Project Size: 4194304 - Benchmark: Equation of State

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: Numba - Project Size: 4194304 - Benchmark: Isoneutral Mixing

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: JAX - Project Size: 4194304 - Benchmark: Isoneutral Mixing

Ryzen 7 7840U: The test run did not produce a result.

Device: CPU - Backend: JAX - Project Size: 4194304 - Benchmark: Equation of State

Ryzen 7 7840U: The test run did not produce a result.

AI Benchmark Alpha

AI Benchmark Alpha is a Python library for evaluating artificial intelligence (AI) performance on diverse hardware platforms and relies upon the TensorFlow machine learning library. Learn more via the OpenBenchmarking.org test page.

Ryzen 7 7840U: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'tensorflow'

CPU Power Consumption Monitor

OpenBenchmarking.orgWattsCPU Power Consumption MonitorPhoronix Test Suite System MonitoringRyzen 7 7840U1122334455Min: 3.64 / Avg: 25.89 / Max: 56.62

Meta Performance Per Watts

OpenBenchmarking.orgPerformance Per Watts, More Is BetterMeta Performance Per WattsPerformance Per WattsRyzen 7 7840U0.54011.08021.62032.16042.70052.4004