new okt

Intel Xeon Silver 4216 testing with a TYAN S7100AG2NR (V4.02 BIOS) and ASPEED on Debian 12 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2310241-NE-NEWOKT15298
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

AV1 2 Tests
CPU Massive 2 Tests
Creator Workloads 7 Tests
Encoding 2 Tests
Game Development 2 Tests
HPC - High Performance Computing 3 Tests
Machine Learning 2 Tests
Multi-Core 7 Tests
Intel oneAPI 5 Tests
Server CPU Tests 2 Tests
Video Encoding 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
October 24 2023
  1 Hour, 56 Minutes
b
October 24 2023
  1 Hour, 56 Minutes
Invert Hiding All Results Option
  1 Hour, 56 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


new oktOpenBenchmarking.orgPhoronix Test SuiteIntel Xeon Silver 4216 @ 3.20GHz (16 Cores / 32 Threads)TYAN S7100AG2NR (V4.02 BIOS)Intel Sky Lake-E DMI3 Registers46GB240GB Corsair Force MP500ASPEEDRealtek ALC8922 x Intel I350Debian 126.1.0-11-amd64 (x86_64)X ServerGCC 12.2.0ext41024x768ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDisplay ServerCompilerFile-SystemScreen ResolutionNew Okt BenchmarksSystem Logs- Transparent Huge Pages: always- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-bTRWOB/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-bTRWOB/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x500002c - Python 3.11.2- gather_data_sampling: Vulnerable: No microcode + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Vulnerable: Clear buffers attempted no microcode; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Mitigation of TSX disabled

a vs. b ComparisonPhoronix Test SuiteBaseline+21.9%+21.9%+43.8%+43.8%+65.7%+65.7%87.4%13%11.4%9.4%6.8%5.6%3.4%3.1%2%D.B.s - u8s8f32 - CPUR.N.N.I - bf16bf16bf16 - CPU16.5%R.N.N.T - u8s8f32 - CPUe.G.B.S - 240IP Shapes 1D - u8s8f32 - CPUIP Shapes 1D - bf16bf16bf16 - CPU8.1%D.B.s - bf16bf16bf16 - CPUIP Shapes 3D - u8s8f32 - CPUR.N.N.T - bf16bf16bf16 - CPU63.3%RT.ldr_alb_nrm.3840x2160 - CPU-Onlye.G.B.S - 12003%Preset 12 - Bosphorus 1080p2.2%e.G.B.S - 2400oneDNNoneDNNoneDNNeasyWaveoneDNNoneDNNoneDNNoneDNNoneDNNlibavif avifencIntel Open Image DenoiseeasyWaveSVT-AV1easyWaveab

new oktopenradioss: Chrysler Neon 1Mopenvkl: vklBenchmarkCPU ISPCopenvkl: vklBenchmarkCPU Scalaropenradioss: INIVOL and Fluid Structure Interaction Drop Containereasywave: e2Asean Grid + BengkuluSept2007 Source - 2400openradioss: Bird Strike on Windshieldopenradioss: Rubber O-Ring Seal Installationoidn: RTLightmap.hdr.4096x4096 - CPU-Onlyopenradioss: Bumper Beamavifenc: 0easywave: e2Asean Grid + BengkuluSept2007 Source - 1200openradioss: Cell Phone Drop Testquantlib: Multi-Threadedoidn: RT.hdr_alb_nrm.3840x2160 - CPU-Onlyoidn: RT.ldr_alb_nrm.3840x2160 - CPU-Onlyavifenc: 2onednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUsvt-av1: Preset 4 - Bosphorus 4Konednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUembree: Pathtracer ISPC - Asian Dragon Objembree: Pathtracer ISPC - Crownopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUembree: Pathtracer - Asian Dragon Objopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUembree: Pathtracer - Crownembree: Pathtracer ISPC - Asian Dragonembree: Pathtracer - Asian Dragonquantlib: Single-Threadedsvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 4Konednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUsvt-av1: Preset 8 - Bosphorus 1080pavifenc: 6, Losslessonednn: IP Shapes 3D - bf16bf16bf16 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUsvt-av1: Preset 13 - Bosphorus 4Keasywave: e2Asean Grid + BengkuluSept2007 Source - 240svt-av1: Preset 12 - Bosphorus 4Kavifenc: 6avifenc: 10, Losslessonednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUsvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080ponednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUab871.6127595553.97404.939312.5200.860.15187.21189.696157.063116.5931381.40.320.3290.4644007.843614.71.9381797.931824.2711.76269.94323455.532.3114.4738935.898.53326.2324.46325.6924.5199.8280.0746.82170.7313.62586.2113.211713.690316.08962056.35.34829.89423.7792.5999410.57841.2825544.22713.2663.120641.5451173.3647.97673.2267.8677.66716.29796.2591181.541180.46621.90381.90079864.3827494553.87396.883311.49198.690.15188.77188.625161.835115.931348.20.320.3391.5883545.83495.731.952094.221807.6811.75739.90973462.592.314.4474925.888.59325.9124.52328.7824.29100.5679.546.41172.2213.6587.0513.108113.619115.96442076.55.44230.15622.26911.3873311.43631.1721244.41113.3623.103261.4636773.2227.15973.88.1297.70816.30616.14564177.555182.35321.91121.90069OpenBenchmarking.org

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Chrysler Neon 1Mab2004006008001000871.61864.38

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 2.0.0Benchmark: vklBenchmarkCPU ISPCab60120180240300275274MIN: 16 / MAX: 4506MIN: 16 / MAX: 4611

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 2.0.0Benchmark: vklBenchmarkCPU Scalarab204060801009594MIN: 7 / MAX: 2170MIN: 7 / MAX: 2156

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: INIVOL and Fluid Structure Interaction Drop Containerab120240360480600553.97553.87

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400ab90180270360450404.94396.881. (CXX) g++ options: -O3 -fopenmp

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Bird Strike on Windshieldab70140210280350312.50311.49

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Rubber O-Ring Seal Installationab4080120160200200.86198.69

Intel Open Image Denoise

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RTLightmap.hdr.4096x4096 - Device: CPU-Onlyab0.03380.06760.10140.13520.1690.150.15

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Bumper Beamab4080120160200187.21188.77

libavif avifenc

This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is Betterlibavif avifenc 1.0Encoder Speed: 0ab4080120160200189.70188.631. (CXX) g++ options: -O3 -fPIC -lm

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200ab4080120160200157.06161.841. (CXX) g++ options: -O3 -fopenmp

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Cell Phone Drop Testab306090120150116.59115.90

QuantLib

QuantLib is an open-source library/framework around quantitative finance for modeling, trading and risk management scenarios. QuantLib is written in C++ with Boost and its built-in benchmark used reports the QuantLib Benchmark Index benchmark score. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMFLOPS, More Is BetterQuantLib 1.32Configuration: Multi-Threadedab7K14K21K28K35K31381.431348.21. (CXX) g++ options: -O3 -march=native -fPIE -pie

Intel Open Image Denoise

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Onlyab0.0720.1440.2160.2880.360.320.32

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Onlyab0.07430.14860.22290.29720.37150.320.33

libavif avifenc

This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is Betterlibavif avifenc 1.0Encoder Speed: 2ab2040608010090.4691.591. (CXX) g++ options: -O3 -fPIC -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUab90018002700360045004007.843545.80MIN: 3484.39MIN: 3487.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUab80016002400320040003614.703495.73MIN: 3480.97MIN: 3479.481. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 4 - Input: Bosphorus 4Kab0.43880.87761.31641.75522.1941.9381.9501. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUab4008001200160020001797.932094.22MIN: 1794.61MIN: 1795.751. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUab4008001200160020001824.271807.68MIN: 1793.75MIN: 1791.141. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Asian Dragon Objab369121511.7611.76MIN: 11.72 / MAX: 11.85MIN: 11.7 / MAX: 11.83

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Crownab36912159.94329.9097MIN: 9.85 / MAX: 10.05MIN: 9.85 / MAX: 10

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUab70014002100280035003455.533462.59MIN: 3418.23 / MAX: 3513.1MIN: 3344.65 / MAX: 3744.531. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUab0.51981.03961.55942.07922.5992.312.301. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Asian Dragon Objab4812162014.4714.45MIN: 14.28 / MAX: 14.7MIN: 14.24 / MAX: 14.67

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUab2004006008001000935.89925.88MIN: 814.75 / MAX: 1196.97MIN: 864.58 / MAX: 1160.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUab2468108.538.591. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUab70140210280350326.23325.91MIN: 277.01 / MAX: 404.38MIN: 157.96 / MAX: 439.441. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUab61218243024.4624.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUab70140210280350325.69328.78MIN: 196.27 / MAX: 414.63MIN: 274.17 / MAX: 400.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUab61218243024.5124.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUab2040608010099.82100.56MIN: 81.59 / MAX: 163.3MIN: 47.57 / MAX: 153.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUab2040608010080.0779.501. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUab112233445546.8246.41MIN: 19.88 / MAX: 104.95MIN: 22.28 / MAX: 96.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUab4080120160200170.73172.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUab4812162013.6213.60MIN: 7.92 / MAX: 98.57MIN: 7.95 / MAX: 64.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUab130260390520650586.21587.051. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Crownab369121513.2113.11MIN: 13.1 / MAX: 13.43MIN: 12.98 / MAX: 13.28

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Asian Dragonab4812162013.6913.62MIN: 13.65 / MAX: 13.76MIN: 13.56 / MAX: 13.69

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Asian Dragonab4812162016.0915.96MIN: 15.88 / MAX: 16.35MIN: 15.75 / MAX: 16.2

QuantLib

QuantLib is an open-source library/framework around quantitative finance for modeling, trading and risk management scenarios. QuantLib is written in C++ with Boost and its built-in benchmark used reports the QuantLib Benchmark Index benchmark score. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMFLOPS, More Is BetterQuantLib 1.32Configuration: Single-Threadedab4008001200160020002056.32076.51. (CXX) g++ options: -O3 -march=native -fPIE -pie

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 4 - Input: Bosphorus 1080pab1.22452.4493.67354.8986.12255.3485.4421. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 8 - Input: Bosphorus 4Kab71421283529.8930.161. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPUab61218243023.7822.27MIN: 21.01MIN: 21.041. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUab0.5851.171.7552.342.9252.599941.38733MIN: 1.31MIN: 1.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPUab369121510.5811.44MIN: 9.94MIN: 9.731. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUab0.28860.57720.86581.15441.4431.282551.17212MIN: 1.1MIN: 1.081. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 8 - Input: Bosphorus 1080pab102030405044.2344.411. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

libavif avifenc

This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is Betterlibavif avifenc 1.0Encoder Speed: 6, Losslessab369121513.2713.361. (CXX) g++ options: -O3 -fPIC -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPUab0.70211.40422.10632.80843.51053.120643.10326MIN: 2.99MIN: 2.971. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUab0.34760.69521.04281.39041.7381.545111.46367MIN: 1.43MIN: 1.421. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 13 - Input: Bosphorus 4Kab163248648073.3673.221. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240ab2468107.9767.1591. (CXX) g++ options: -O3 -fopenmp

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 12 - Input: Bosphorus 4Kab163248648073.2373.801. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

libavif avifenc

This is a test of the AOMedia libavif library testing the encoding of a JPEG image to AV1 Image Format (AVIF). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is Betterlibavif avifenc 1.0Encoder Speed: 6ab2468107.8678.1291. (CXX) g++ options: -O3 -fPIC -lm

OpenBenchmarking.orgSeconds, Fewer Is Betterlibavif avifenc 1.0Encoder Speed: 10, Losslessab2468107.6677.7081. (CXX) g++ options: -O3 -fPIC -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPUab4812162016.3016.31MIN: 16.28MIN: 16.281. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUab2468106.259106.14564MIN: 6.21MIN: 6.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 12 - Input: Bosphorus 1080pab4080120160200181.54177.561. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.7Encoder Mode: Preset 13 - Input: Bosphorus 1080pab4080120160200180.47182.351. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPUab51015202521.9021.91MIN: 21.78MIN: 21.81. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUab0.42770.85541.28311.71082.13851.900791.90069MIN: 1.89MIN: 1.891. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

63 Results Shown

OpenRadioss
OpenVKL:
  vklBenchmarkCPU ISPC
  vklBenchmarkCPU Scalar
OpenRadioss
easyWave
OpenRadioss:
  Bird Strike on Windshield
  Rubber O-Ring Seal Installation
Intel Open Image Denoise
OpenRadioss
libavif avifenc
easyWave
OpenRadioss
QuantLib
Intel Open Image Denoise:
  RT.hdr_alb_nrm.3840x2160 - CPU-Only
  RT.ldr_alb_nrm.3840x2160 - CPU-Only
libavif avifenc
oneDNN:
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
SVT-AV1
oneDNN:
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
Embree:
  Pathtracer ISPC - Asian Dragon Obj
  Pathtracer ISPC - Crown
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
Embree
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
Embree:
  Pathtracer - Crown
  Pathtracer ISPC - Asian Dragon
  Pathtracer - Asian Dragon
QuantLib
SVT-AV1:
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 4K
oneDNN:
  Deconvolution Batch shapes_1d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  IP Shapes 1D - bf16bf16bf16 - CPU
  IP Shapes 1D - u8s8f32 - CPU
SVT-AV1
libavif avifenc
oneDNN:
  IP Shapes 3D - bf16bf16bf16 - CPU
  IP Shapes 3D - u8s8f32 - CPU
SVT-AV1
easyWave
SVT-AV1
libavif avifenc:
  6
  10, Lossless
oneDNN:
  Convolution Batch Shapes Auto - bf16bf16bf16 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
SVT-AV1:
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
oneDNN:
  Deconvolution Batch shapes_3d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU