Supermicro X13DEM + Xeon Max 9480 2S

Benchmarks for a future article.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2307092-NE-SUPERMICR61
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
Supermicro X13DEM
July 08 2023
  15 Hours, 35 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


Supermicro X13DEM + Xeon Max 9480 2SOpenBenchmarking.orgPhoronix Test Suite2 x Intel Xeon Max 9480 @ 3.50GHz (112 Cores / 224 Threads)Supermicro X13DEM v1.10 (1.3 BIOS)Intel Device 1bce512GB7682GB INTEL SSDPF2KX076TZASPEEDVE2282 x Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200GbUbuntu 23.046.2.0-20-generic (x86_64)GNOME Shell 44.0X Server 1.21.1.7GCC 12.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsMonitorNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen ResolutionSupermicro X13DEM + Xeon Max 9480 2S BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_cpufreq performance - CPU Microcode: 0x2c0001d1- Python 3.11.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected

Supermicro X13DEM + Xeon Max 9480 2Shpcg: 160 160 160 - 1800hpcg: 144 144 144 - 1800hpcg: 160 160 160 - 60hpcg: 104 104 104 - 1800tensorflow: CPU - 256 - ResNet-50hpcg: 144 144 144 - 60tensorflow: CPU - 512 - ResNet-50onednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUcompress-7zip: Decompression Ratingcompress-7zip: Compression Ratingopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUtensorflow: CPU - 512 - GoogLeNettensorflow: CPU - 16 - ResNet-50liquid-dsp: 224 - 256 - 57tensorflow: CPU - 256 - GoogLeNethpcg: 104 104 104 - 60tensorflow: CPU - 64 - ResNet-50openfoam: drivaerFastback, Medium Mesh Size - Execution Timeopenfoam: drivaerFastback, Medium Mesh Size - Mesh Timeliquid-dsp: 128 - 256 - 57tensorflow: CPU - 16 - GoogLeNetonednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUtensorflow: CPU - 512 - AlexNetopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUtensorflow: CPU - 32 - ResNet-50onednn: IP Shapes 1D - bf16bf16bf16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUtensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 256 - AlexNetonednn: IP Shapes 3D - u8s8f32 - CPUtensorflow: CPU - 32 - GoogLeNetliquid-dsp: 224 - 256 - 512liquid-dsp: 128 - 256 - 512liquid-dsp: 64 - 256 - 512liquid-dsp: 224 - 256 - 32liquid-dsp: 128 - 256 - 32liquid-dsp: 64 - 256 - 57liquid-dsp: 64 - 256 - 32gromacs: MPI CPU - water_GMX50_bareopenfoam: drivaerFastback, Small Mesh Size - Execution Timeopenfoam: drivaerFastback, Small Mesh Size - Mesh Timetensorflow: CPU - 64 - AlexNettensorflow: CPU - 16 - AlexNettensorflow: CPU - 32 - AlexNetonednn: IP Shapes 3D - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPUheffte: c2c - FFTW - double - 128heffte: r2c - FFTW - double - 128heffte: c2c - FFTW - float - 128heffte: r2c - FFTW - float - 128Supermicro X13DEM46.612252.329149.277783.386870.3567.635776.5016205.215281.51561.501529.623754632500970.43111618.65229.9238.843491026667202.7598.706256.23216.41374185.79795280852500095.540.5507610.465790703.37342.74326.0749.139.8600118.306106.98788.8735.34179.24156.00776.3035.928.6789548.52576.2720.835368.253.4431567.436.6816412.071.370078.529.842838.23150.72630.935.95375131.071089100000960263333691566667419800000030397666672003333333193846666710.48741.64175139.643513452.07229.02346.8098.32753.967370.6353916.915823.9927783.6001125.2268131.7223178.192OpenBenchmarking.org

High Performance Conjugate Gradient

HPCG is the High Performance Conjugate Gradient and is a new scientific benchmark from Sandia National Lans focused for super-computer testing with modern real-world workloads compared to HPCC. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 160 160 160 - RT: 1800Supermicro X13DEM1122334455SE +/- 0.09, N = 346.611. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 144 144 144 - RT: 1800Supermicro X13DEM1224364860SE +/- 0.24, N = 352.331. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 160 160 160 - RT: 60Supermicro X13DEM1122334455SE +/- 0.49, N = 949.281. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 104 104 104 - RT: 1800Supermicro X13DEM20406080100SE +/- 0.28, N = 383.391. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: ResNet-50Supermicro X13DEM1632486480SE +/- 0.71, N = 970.35

High Performance Conjugate Gradient

HPCG is the High Performance Conjugate Gradient and is a new scientific benchmark from Sandia National Lans focused for super-computer testing with modern real-world workloads compared to HPCC. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 144 144 144 - RT: 60Supermicro X13DEM1530456075SE +/- 1.96, N = 967.641. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: ResNet-50Supermicro X13DEM20406080100SE +/- 0.37, N = 376.50

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM3K6K9K12K15KSE +/- 756.91, N = 1216205.2MIN: 8191.851. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM3K6K9K12K15KSE +/- 638.78, N = 915281.5MIN: 8274.141. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM30060090012001500SE +/- 17.08, N = 151561.50MIN: 1230.711. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM30060090012001500SE +/- 22.08, N = 151529.62MIN: 1128.731. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

7-Zip Compression

This is a test of 7-Zip compression/decompression with its integrated benchmark feature. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMIPS, More Is Better7-Zip Compression 22.01Test: Decompression RatingSupermicro X13DEM80K160K240K320K400KSE +/- 1540.70, N = 153754631. (CXX) g++ options: -lpthread -ldl -O2 -fPIC

OpenBenchmarking.orgMIPS, More Is Better7-Zip Compression 22.01Test: Compression RatingSupermicro X13DEM50K100K150K200K250KSE +/- 2196.85, N = 152500971. (CXX) g++ options: -lpthread -ldl -O2 -fPIC

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUSupermicro X13DEM0.09680.19360.29040.38720.484SE +/- 0.00, N = 150.43MIN: 0.32 / MAX: 39.191. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUSupermicro X13DEM20K40K60K80K100KSE +/- 1040.90, N = 15111618.651. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: GoogLeNetSupermicro X13DEM50100150200250SE +/- 2.27, N = 3229.92

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50Supermicro X13DEM918273645SE +/- 0.31, N = 1038.84

Liquid-DSP

LiquidSDR's Liquid-DSP is a software-defined radio (SDR) digital signal processing library. This test profile runs a multi-threaded benchmark of this SDR/DSP library focused on embedded platform usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 224 - Buffer Length: 256 - Filter Length: 57Supermicro X13DEM700M1400M2100M2800M3500MSE +/- 23658342.87, N = 1534910266671. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: GoogLeNetSupermicro X13DEM4080120160200SE +/- 2.69, N = 3202.75

High Performance Conjugate Gradient

HPCG is the High Performance Conjugate Gradient and is a new scientific benchmark from Sandia National Lans focused for super-computer testing with modern real-world workloads compared to HPCC. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOP/s, More Is BetterHigh Performance Conjugate Gradient 3.1X Y Z: 104 104 104 - RT: 60Supermicro X13DEM20406080100SE +/- 0.05, N = 398.711. (CXX) g++ options: -O3 -ffast-math -ftree-vectorize -lmpi_cxx -lmpi

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: ResNet-50Supermicro X13DEM1326395265SE +/- 0.34, N = 356.23

OpenFOAM

OpenFOAM is the leading free, open-source software for computational fluid dynamics (CFD). This test profile currently uses the drivaerFastback test case for analyzing automotive aerodynamics or alternatively the older motorBike input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenFOAM 10Input: drivaerFastback, Medium Mesh Size - Execution TimeSupermicro X13DEM50100150200250216.411. (CXX) g++ options: -std=c++14 -m64 -O3 -ftemplate-depth-100 -fPIC -fuse-ld=bfd -Xlinker --add-needed --no-as-needed -lfiniteVolume -lmeshTools -lparallel -llagrangian -lregionModels -lgenericPatchFields -lOpenFOAM -ldl -lm

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenFOAM 10Input: drivaerFastback, Medium Mesh Size - Mesh TimeSupermicro X13DEM4080120160200185.801. (CXX) g++ options: -std=c++14 -m64 -O3 -ftemplate-depth-100 -fPIC -fuse-ld=bfd -Xlinker --add-needed --no-as-needed -lfiniteVolume -lmeshTools -lparallel -llagrangian -lregionModels -lgenericPatchFields -lOpenFOAM -ldl -lm

Liquid-DSP

LiquidSDR's Liquid-DSP is a software-defined radio (SDR) digital signal processing library. This test profile runs a multi-threaded benchmark of this SDR/DSP library focused on embedded platform usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 128 - Buffer Length: 256 - Filter Length: 57Supermicro X13DEM600M1200M1800M2400M3000MSE +/- 19954824.45, N = 1228085250001. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetSupermicro X13DEM20406080100SE +/- 0.80, N = 1595.54

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM0.12390.24780.37170.49560.6195SE +/- 0.012941, N = 150.550761MIN: 0.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

High Performance Conjugate Gradient

HPCG is the High Performance Conjugate Gradient and is a new scientific benchmark from Sandia National Lans focused for super-computer testing with modern real-world workloads compared to HPCC. Learn more via the OpenBenchmarking.org test page.

X Y Z: 192 192 192 - RT: 60

Supermicro X13DEM: The test quit with a non-zero exit status. E: cat: 'HPCG-Benchmark*.txt': No such file or directory

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM0.10480.20960.31440.41920.524SE +/- 0.004772, N = 120.465790MIN: 0.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: AlexNetSupermicro X13DEM150300450600750SE +/- 7.39, N = 3703.37

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUSupermicro X13DEM70140210280350SE +/- 0.41, N = 3342.74MIN: 230.49 / MAX: 574.021. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUSupermicro X13DEM70140210280350SE +/- 0.37, N = 3326.071. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: ResNet-50Supermicro X13DEM1122334455SE +/- 0.37, N = 349.13

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM3691215SE +/- 0.11760, N = 159.86001MIN: 5.851. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUSupermicro X13DEM510152025SE +/- 0.03, N = 318.30MIN: 12.96 / MAX: 141.051. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUSupermicro X13DEM13002600390052006500SE +/- 9.04, N = 36106.981. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUSupermicro X13DEM2004006008001000SE +/- 5.04, N = 3788.87MIN: 554.42 / MAX: 2491.021. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUSupermicro X13DEM816243240SE +/- 0.21, N = 335.341. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUSupermicro X13DEM4080120160200SE +/- 0.33, N = 3179.24MIN: 127.87 / MAX: 809.81. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUSupermicro X13DEM306090120150SE +/- 0.28, N = 3156.001. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUSupermicro X13DEM2004006008001000SE +/- 5.33, N = 3776.30MIN: 498.23 / MAX: 2519.421. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUSupermicro X13DEM816243240SE +/- 0.24, N = 335.921. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM246810SE +/- 0.23527, N = 138.67895MIN: 3.991. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUSupermicro X13DEM1122334455SE +/- 0.16, N = 348.52MIN: 35.66 / MAX: 517.091. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUSupermicro X13DEM120240360480600SE +/- 1.83, N = 3576.271. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUSupermicro X13DEM510152025SE +/- 0.08, N = 320.83MIN: 14.16 / MAX: 170.681. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUSupermicro X13DEM12002400360048006000SE +/- 19.42, N = 35368.251. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUSupermicro X13DEM0.7741.5482.3223.0963.87SE +/- 0.01, N = 33.44MIN: 2.52 / MAX: 74.081. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUSupermicro X13DEM7K14K21K28K35KSE +/- 84.25, N = 331567.431. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUSupermicro X13DEM246810SE +/- 0.01, N = 36.68MIN: 4.5 / MAX: 67.751. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUSupermicro X13DEM4K8K12K16K20KSE +/- 31.76, N = 316412.071. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUSupermicro X13DEM0.29250.5850.87751.171.4625SE +/- 0.00, N = 31.3MIN: 0.97 / MAX: 37.071. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUSupermicro X13DEM15K30K45K60K75KSE +/- 340.16, N = 370078.521. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUSupermicro X13DEM3691215SE +/- 0.03, N = 39.84MIN: 7.22 / MAX: 92.251. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUSupermicro X13DEM6001200180024003000SE +/- 9.32, N = 32838.231. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: GoogLeNetSupermicro X13DEM306090120150SE +/- 0.82, N = 3150.72

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: AlexNetSupermicro X13DEM140280420560700SE +/- 6.07, N = 3630.93

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM1.33962.67924.01885.35846.698SE +/- 0.04672, N = 105.95375MIN: 3.741. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: GoogLeNetSupermicro X13DEM306090120150SE +/- 0.92, N = 3131.07

Liquid-DSP

LiquidSDR's Liquid-DSP is a software-defined radio (SDR) digital signal processing library. This test profile runs a multi-threaded benchmark of this SDR/DSP library focused on embedded platform usage. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 224 - Buffer Length: 256 - Filter Length: 512Supermicro X13DEM200M400M600M800M1000MSE +/- 15473310.35, N = 310891000001. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 128 - Buffer Length: 256 - Filter Length: 512Supermicro X13DEM200M400M600M800M1000MSE +/- 8036616.89, N = 39602633331. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 64 - Buffer Length: 256 - Filter Length: 512Supermicro X13DEM150M300M450M600M750MSE +/- 5500937.29, N = 36915666671. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 224 - Buffer Length: 256 - Filter Length: 32Supermicro X13DEM900M1800M2700M3600M4500MSE +/- 13020880.67, N = 341980000001. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 128 - Buffer Length: 256 - Filter Length: 32Supermicro X13DEM700M1400M2100M2800M3500MSE +/- 8783001.26, N = 330397666671. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 64 - Buffer Length: 256 - Filter Length: 57Supermicro X13DEM400M800M1200M1600M2000MSE +/- 14563233.77, N = 320033333331. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

OpenBenchmarking.orgsamples/s, More Is BetterLiquid-DSP 1.6Threads: 64 - Buffer Length: 256 - Filter Length: 32Supermicro X13DEM400M800M1200M1600M2000MSE +/- 5994534.55, N = 319384666671. (CC) gcc options: -O3 -pthread -lm -lc -lliquid

GROMACS

The GROMACS (GROningen MAchine for Chemical Simulations) molecular dynamics package testing with the water_GMX50 data. This test profile allows selecting between CPU and GPU-based GROMACS builds. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNs Per Day, More Is BetterGROMACS 2023Implementation: MPI CPU - Input: water_GMX50_bareSupermicro X13DEM3691215SE +/- 0.05, N = 310.491. (CXX) g++ options: -O3

OpenFOAM

OpenFOAM is the leading free, open-source software for computational fluid dynamics (CFD). This test profile currently uses the drivaerFastback test case for analyzing automotive aerodynamics or alternatively the older motorBike input. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenFOAM 10Input: drivaerFastback, Small Mesh Size - Execution TimeSupermicro X13DEM102030405041.641. (CXX) g++ options: -std=c++14 -m64 -O3 -ftemplate-depth-100 -fPIC -fuse-ld=bfd -Xlinker --add-needed --no-as-needed -lfiniteVolume -lmeshTools -lparallel -llagrangian -lregionModels -lgenericPatchFields -lOpenFOAM -ldl -lm

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenFOAM 10Input: drivaerFastback, Small Mesh Size - Mesh TimeSupermicro X13DEM91827364539.641. (CXX) g++ options: -std=c++14 -m64 -O3 -ftemplate-depth-100 -fPIC -fuse-ld=bfd -Xlinker --add-needed --no-as-needed -lfiniteVolume -lmeshTools -lparallel -llagrangian -lregionModels -lgenericPatchFields -lOpenFOAM -ldl -lm

High Performance Conjugate Gradient

HPCG is the High Performance Conjugate Gradient and is a new scientific benchmark from Sandia National Lans focused for super-computer testing with modern real-world workloads compared to HPCC. Learn more via the OpenBenchmarking.org test page.

X Y Z: 192 192 192 - RT: 1800

Supermicro X13DEM: The test quit with a non-zero exit status. E: cat: 'HPCG-Benchmark*.txt': No such file or directory

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: AlexNetSupermicro X13DEM100200300400500SE +/- 3.09, N = 3452.07

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetSupermicro X13DEM50100150200250SE +/- 1.79, N = 5229.02

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: AlexNetSupermicro X13DEM80160240320400SE +/- 2.71, N = 4346.80

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM20406080100SE +/- 0.73, N = 598.33MIN: 85.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM0.89271.78542.67813.57084.4635SE +/- 0.04141, N = 153.96737MIN: 2.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM0.1430.2860.4290.5720.715SE +/- 0.014173, N = 150.635391MIN: 0.421. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUSupermicro X13DEM246810SE +/- 0.02874, N = 76.91582MIN: 5.741. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPUSupermicro X13DEM0.89841.79682.69523.59364.492SE +/- 0.03033, N = 73.99277MIN: 3.111. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

HeFFTe - Highly Efficient FFT for Exascale

HeFFTe is the Highly Efficient FFT for Exascale software developed as part of the Exascale Computing Project. This test profile uses HeFFTe's built-in speed benchmarks under a variety of configuration options and currently catering to CPU/processor testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOP/s, More Is BetterHeFFTe - Highly Efficient FFT for Exascale 2.3Test: c2c - Backend: FFTW - Precision: double - X Y Z: 128Supermicro X13DEM20406080100SE +/- 2.99, N = 1583.601. (CXX) g++ options: -O3

OpenBenchmarking.orgGFLOP/s, More Is BetterHeFFTe - Highly Efficient FFT for Exascale 2.3Test: r2c - Backend: FFTW - Precision: double - X Y Z: 128Supermicro X13DEM306090120150SE +/- 4.64, N = 15125.231. (CXX) g++ options: -O3

OpenBenchmarking.orgGFLOP/s, More Is BetterHeFFTe - Highly Efficient FFT for Exascale 2.3Test: c2c - Backend: FFTW - Precision: float - X Y Z: 128Supermicro X13DEM306090120150SE +/- 3.69, N = 15131.721. (CXX) g++ options: -O3

OpenBenchmarking.orgGFLOP/s, More Is BetterHeFFTe - Highly Efficient FFT for Exascale 2.3Test: r2c - Backend: FFTW - Precision: float - X Y Z: 128Supermicro X13DEM4080120160200SE +/- 4.09, N = 15178.191. (CXX) g++ options: -O3

System Temperature Monitor

OpenBenchmarking.orgCelsiusSystem Temperature MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM1122334455Min: 34 / Avg: 48.27 / Max: 55

System Power Consumption Monitor

OpenBenchmarking.orgWattsSystem Power Consumption MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM160320480640800Min: 286 / Avg: 773.3 / Max: 897

Drive Temperature (nvme0n1) Monitor

OpenBenchmarking.orgCelsiusDrive Temperature (nvme0n1) MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM714212835Min: 28.85 / Avg: 32.09 / Max: 33.85

CPU Temperature Monitor

OpenBenchmarking.orgCelsiusCPU Temperature MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM1020304050Min: 31 / Avg: 41.84 / Max: 51

CPU Power Consumption Monitor

OpenBenchmarking.orgWattsCPU Power Consumption MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM2004006008001000Min: 147.94 / Avg: 601.43 / Max: 1087.23

CPU Peak Freq (Highest CPU Core Frequency) Monitor

OpenBenchmarking.orgMegahertzCPU Peak Freq (Highest CPU Core Frequency) MonitorPhoronix Test Suite System MonitoringSupermicro X13DEM8001600240032004000Min: 926 / Avg: 2407.09 / Max: 4668

85 Results Shown

High Performance Conjugate Gradient:
  160 160 160 - 1800
  144 144 144 - 1800
  160 160 160 - 60
  104 104 104 - 1800
TensorFlow
High Performance Conjugate Gradient
TensorFlow
oneDNN:
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
7-Zip Compression:
  Decompression Rating
  Compression Rating
OpenVINO:
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
TensorFlow:
  CPU - 512 - GoogLeNet
  CPU - 16 - ResNet-50
Liquid-DSP
TensorFlow
High Performance Conjugate Gradient
TensorFlow
OpenFOAM:
  drivaerFastback, Medium Mesh Size - Execution Time
  drivaerFastback, Medium Mesh Size - Mesh Time
Liquid-DSP
TensorFlow
oneDNN:
  Deconvolution Batch shapes_1d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
TensorFlow
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
TensorFlow
oneDNN
OpenVINO:
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
oneDNN
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
TensorFlow:
  CPU - 64 - GoogLeNet
  CPU - 256 - AlexNet
oneDNN
TensorFlow
Liquid-DSP:
  224 - 256 - 512
  128 - 256 - 512
  64 - 256 - 512
  224 - 256 - 32
  128 - 256 - 32
  64 - 256 - 57
  64 - 256 - 32
GROMACS
OpenFOAM:
  drivaerFastback, Small Mesh Size - Execution Time
  drivaerFastback, Small Mesh Size - Mesh Time
TensorFlow:
  CPU - 64 - AlexNet
  CPU - 16 - AlexNet
  CPU - 32 - AlexNet
oneDNN:
  IP Shapes 3D - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_3d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Convolution Batch Shapes Auto - bf16bf16bf16 - CPU
HeFFTe - Highly Efficient FFT for Exascale:
  c2c - FFTW - double - 128
  r2c - FFTW - double - 128
  c2c - FFTW - float - 128
  r2c - FFTW - float - 128
System Temperature Monitor:
  Phoronix Test Suite System Monitoring:
    Celsius
    Watts
    Celsius
    Celsius
    Watts
    Megahertz