openSUSE TW x86-64-v3

Benchmarks for a future article.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2303056-NE-OPENSUSET02
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
x86-64-v3
March 05 2023
  1 Hour, 36 Minutes
Default
March 05 2023
  1 Hour, 37 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 37 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


openSUSE TW x86-64-v3OpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-10700T @ 4.50GHz (8 Cores / 16 Threads)Logic Supply RXM-181 (Z01-0002A026 BIOS)Intel Comet Lake PCH32GB256GB TS256GMTS800 + 15GB Ultra USB 3.0Intel UHD 630 CML GT2 31GBRealtek ALC233DELL P2415QIntel I219-LM + Intel I210openSUSE 202303036.2.1-1-default (x86_64)KDE Plasma 5.27.2X Server 1.21.1.74.6 Mesa 23.0.0GCC 12.2.1 20230124 [revision 193f7e62815b4089dfaed4c2bd34fd4f10209e27]btrfs1920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionOpenSUSE TW X86-64-v3 BenchmarksSystem Logs- Transparent Huge Pages: always- Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xf4- Python 3.10.9- itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

x86-64-v3 vs. Default ComparisonPhoronix Test SuiteBaseline+0.7%+0.7%+1.4%+1.4%+2.1%+2.1%+2.8%+2.8%2.1%Relative Entropy2.8%Earthgecko Skyline2.3%raytraceNumenta Anomaly BenchmarkNumenta Anomaly BenchmarkPyPerformancex86-64-v3Default

openSUSE TW x86-64-v3numpy: system-libxml2: 1 MBsystem-libxml2: 2 MBsystem-libxml2: 3 MBsystem-libxml2: 100 KBsystem-libxml2: 112 MBsystem-libxml2: 400 KBsystem-libxml2: 700 KBsystem-libxml2: 950 KBpybench: Total For Average Test Timespyperformance: gopyperformance: 2to3pyperformance: chaospyperformance: floatpyperformance: nbodypyperformance: pathlibpyperformance: raytracepyperformance: json_loadspyperformance: crypto_pyaespyperformance: regex_compilepyperformance: python_startuppyperformance: django_templatepyperformance: pickle_pure_pythonnumenta-nab: KNN CADnumenta-nab: Relative Entropynumenta-nab: Windowed Gaussiannumenta-nab: Earthgecko Skylinenumenta-nab: Bayesian Changepointnumenta-nab: Contextual Anomaly Detector OSEx86-64-v3Default373.79449146421757965671287302414122024335211811616519.654726.312819412.454.6483378.10732.66515.077191.33162.20475.551376.88450146621607965846289303416121624134811811616519.653626.312819312.253.8481373.82933.57615.084195.71861.45875.759OpenBenchmarking.org

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkDefaultx86-64-v380160240320400SE +/- 1.37, N = 3SE +/- 1.11, N = 3376.88373.79

System Libxml2 Parsing

This test measures the time to parse a random XML file with libxml2 via xmllint using the streaming API. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 1 MBDefaultx86-64-v3100200300400500SE +/- 2.85, N = 3SE +/- 0.67, N = 3450449

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 2 MBDefaultx86-64-v330060090012001500SE +/- 11.39, N = 3SE +/- 6.89, N = 314661464

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 3 MBDefaultx86-64-v35001000150020002500SE +/- 3.21, N = 3SE +/- 19.94, N = 321602175

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 100 KBDefaultx86-64-v320406080100SE +/- 0.33, N = 3SE +/- 0.00, N = 37979

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 112 MBDefaultx86-64-v314K28K42K56K70KSE +/- 426.89, N = 3SE +/- 211.17, N = 36584665671

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 400 KBDefaultx86-64-v360120180240300SE +/- 1.53, N = 3SE +/- 0.88, N = 3289287

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 700 KBDefaultx86-64-v370140210280350SE +/- 1.20, N = 3SE +/- 0.58, N = 3303302

OpenBenchmarking.orgms, Fewer Is BetterSystem Libxml2 ParsingFilesize: 950 KBDefaultx86-64-v390180270360450SE +/- 1.20, N = 3SE +/- 0.67, N = 3416414

PyBench

This test profile reports the total time of the different average timed test results from PyBench. PyBench reports average test times for different functions such as BuiltinFunctionCalls and NestedForLoops, with this total result providing a rough estimate as to Python's average performance on a given system. This test profile runs PyBench each time for 20 rounds. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyBench 2018-02-16Total For Average Test TimesDefaultx86-64-v330060090012001500SE +/- 1.15, N = 3SE +/- 3.67, N = 312161220

PyPerformance

PyPerformance is the reference Python performance benchmark suite. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: goDefaultx86-64-v350100150200250SE +/- 0.33, N = 3SE +/- 0.33, N = 3241243

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: 2to3Defaultx86-64-v380160240320400SE +/- 0.88, N = 3SE +/- 0.67, N = 3348352

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: chaosDefaultx86-64-v3306090120150SE +/- 0.00, N = 3SE +/- 0.00, N = 3118118

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: floatDefaultx86-64-v3306090120150SE +/- 0.33, N = 3SE +/- 0.00, N = 3116116

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: nbodyDefaultx86-64-v34080120160200SE +/- 0.33, N = 3SE +/- 0.33, N = 3165165

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: pathlibDefaultx86-64-v3510152025SE +/- 0.03, N = 3SE +/- 0.03, N = 319.619.6

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: raytraceDefaultx86-64-v3120240360480600SE +/- 1.53, N = 3SE +/- 2.52, N = 3536547

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: json_loadsDefaultx86-64-v3612182430SE +/- 0.07, N = 3SE +/- 0.03, N = 326.326.3

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: crypto_pyaesDefaultx86-64-v3306090120150SE +/- 0.00, N = 3SE +/- 0.00, N = 3128128

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: regex_compileDefaultx86-64-v34080120160200SE +/- 0.00, N = 3SE +/- 0.00, N = 3193194

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: python_startupDefaultx86-64-v33691215SE +/- 0.03, N = 3SE +/- 0.17, N = 312.212.4

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: django_templateDefaultx86-64-v31224364860SE +/- 0.15, N = 3SE +/- 0.17, N = 353.854.6

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: pickle_pure_pythonDefaultx86-64-v3100200300400500SE +/- 0.58, N = 3SE +/- 0.33, N = 3481483

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADDefaultx86-64-v380160240320400SE +/- 1.44, N = 3SE +/- 1.99, N = 3373.83378.11

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyDefaultx86-64-v3816243240SE +/- 0.32, N = 6SE +/- 0.45, N = 333.5832.67

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianDefaultx86-64-v348121620SE +/- 0.13, N = 12SE +/- 0.10, N = 1315.0815.08

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineDefaultx86-64-v34080120160200SE +/- 0.76, N = 3SE +/- 2.23, N = 3195.72191.33

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointDefaultx86-64-v31428425670SE +/- 0.65, N = 15SE +/- 0.70, N = 1561.4662.20

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEDefaultx86-64-v320406080100SE +/- 0.63, N = 3SE +/- 0.42, N = 375.7675.55