epyc jan

AMD EPYC 7F32 8-Core testing with a ASRockRack EPYCD8 (P2.40 BIOS) and ASPEED on Debian 11 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2301044-NE-EPYCJAN6137
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 04 2023
  41 Minutes
b
January 04 2023
  41 Minutes
c
January 04 2023
  41 Minutes
Invert Behavior (Only Show Selected Data)
  41 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


epyc janOpenBenchmarking.orgPhoronix Test SuiteAMD EPYC 7F32 8-Core @ 3.70GHz (8 Cores / 16 Threads)ASRockRack EPYCD8 (P2.40 BIOS)AMD Starship/Matisse28GBSamsung SSD 970 EVO Plus 250GBASPEED2 x Intel I350Debian 115.10.0-10-amd64 (x86_64)GNOME Shell 3.38.6X ServerGCC 10.2.1 20210110ext41024x768ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen ResolutionEpyc Jan BenchmarksSystem Logs- Transparent Huge Pages: always- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-mutex --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-10-Km9U7s/gcc-10-10.2.1/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-10-Km9U7s/gcc-10-10.2.1/debian/tmp-gcn/usr,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x8301034 - Python 3.9.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%102%103%104%oneDNNKvazaarOpenVINOuvg266

epyc janonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: IP Shapes 3D - f32 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUonednn: Deconvolution Batch shapes_1d - f32 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUkvazaar: Bosphorus 1080p - Ultra Fastopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUkvazaar: Bosphorus 1080p - Super Fastkvazaar: Bosphorus 4K - Super Fastkvazaar: Bosphorus 1080p - Mediumonednn: Recurrent Neural Network Inference - f32 - CPUkvazaar: Bosphorus 1080p - Very Fastkvazaar: Bosphorus 1080p - Slowkvazaar: Bosphorus 4K - Slowuvg266: Bosphorus 1080p - Super Fastkvazaar: Bosphorus 4K - Ultra Fastopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUuvg266: Bosphorus 1080p - Ultra Fastopenvino: Person Detection FP32 - CPUuvg266: Bosphorus 4K - Mediumkvazaar: Bosphorus 4K - Very Fastuvg266: Bosphorus 1080p - Very Fastuvg266: Bosphorus 4K - Super Fastuvg266: Bosphorus 1080p - Slowopenvino: Age Gender Recognition Retail 0013 FP16 - CPUkvazaar: Bosphorus 4K - Mediumopenvino: Face Detection FP16-INT8 - CPUuvg266: Bosphorus 1080p - Mediumonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUuvg266: Bosphorus 4K - Very Fastopenvino: Face Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUuvg266: Bosphorus 4K - Ultra Fastonednn: IP Shapes 1D - f32 - CPUopenvino: Person Detection FP32 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUuvg266: Bosphorus 4K - Slowabc9.105384674.567.759922.33178.96167.9923.81.552546.479.518031592.852.4916.83237.54126.261.286215.7298.6123.3539.441852.5177.1437.847.7867.5130.6219.4218.2278.761.595.1519.3167.0215.3923.486011.077.942.726.651.26064214.0318.6815.591476.13263.6630.3318.113.518942509.266.544591.324.5510.61564368.148.2092524.75161.51158.0525.291.5924919.719521617.722.4416.77238.39124.831.296156.3297.3823.4339.021871.5476.5737.57.7166.9430.63219.1518.2478.791.595.1619.2966.8215.4423.596017.557.912.6926.741.26382213.7618.715.551478.75264.0530.2918.113.519892507.816.543391.324.559.082644112.97.3892123.88167.26160.9524.841.572520.939.67411626.12.4416.53241.78126.821.276245.7497.7423.6139.141863.276.3737.487.7567.3630.84220.7418.1178.271.585.1819.466.6415.4723.546036.077.942.726.731.26462213.3718.7315.591475.07263.4230.3618.153.524832506.426.538831.324.55OpenBenchmarking.org

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUcab36912159.082649.1053810.61560MIN: 8.86MIN: 8.82MIN: 10.381. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUcba100020003000400050004112.904368.144674.56MIN: 4042.72MIN: 4351.87MIN: 4644.281. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUcab2468107.389217.759908.20925MIN: 7.3MIN: 7.59MIN: 8.121. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUbca61218243024.7523.8822.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUbca4080120160200161.51167.26178.96MIN: 133.52 / MAX: 182.1MIN: 150 / MAX: 189.8MIN: 155.07 / MAX: 200.531. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUacb4080120160200167.99160.95158.051. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUacb61218243023.8024.8425.29MIN: 20.72 / MAX: 35.81MIN: 21.96 / MAX: 35.44MIN: 17.53 / MAX: 35.381. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUbca0.35780.71561.07341.43121.7891.591.571.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUbca50010001500200025002491.002520.932546.47MIN: 2360.98 / MAX: 2629.02MIN: 2306.03 / MAX: 2644.87MIN: 1876.79 / MAX: 2709.661. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUacb36912159.518039.674109.71952MIN: 9.04MIN: 9.45MIN: 5.781. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUabc300600900120015001592.851617.721626.10MIN: 883.68 / MAX: 1704.69MIN: 1522.08 / MAX: 1711.87MIN: 1579.53 / MAX: 1757.31. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUacb0.56031.12061.68092.24122.80152.492.442.441. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUcba4812162016.5316.7716.83MIN: 12.49 / MAX: 24.39MIN: 12.04 / MAX: 29.28MIN: 14.63 / MAX: 23.381. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUcba50100150200250241.78238.39237.541. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Ultra Fastcab306090120150126.82126.26124.831. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab0.29030.58060.87091.16121.45151.271.281.29MIN: 0.76 / MAX: 10.03MIN: 0.83 / MAX: 9.28MIN: 0.76 / MAX: 8.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab130026003900520065006245.746215.726156.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Super Fastacb2040608010098.6197.7497.381. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Super Fastcba61218243023.6123.4323.351. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Mediumacb91827364539.4439.1439.021. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUacb4008001200160020001852.511863.201871.54MIN: 1841.49MIN: 1852.45MIN: 1859.811. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Very Fastabc2040608010077.1476.5776.371. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Slowabc91827364537.8437.5037.481. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Slowacb2468107.787.757.711. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Super Fastacb153045607567.5167.3666.94

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Ultra Fastcba71421283530.8430.6330.601. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUcab50100150200250220.74219.42219.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUcab4812162018.1118.2218.24MIN: 12.45 / MAX: 29.31MIN: 11.35 / MAX: 37.4MIN: 16.17 / MAX: 30.11. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Ultra Fastbac2040608010078.7978.7678.27

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUbac0.35780.71561.07341.43121.7891.591.591.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Mediumcba1.16552.3313.49654.6625.82755.185.165.15

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Very Fastcab51015202519.4019.3119.291. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Very Fastabc153045607567.0266.8266.64

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Super Fastcba4812162015.4715.4415.39

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Slowbca61218243023.5923.5423.48

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUcba130026003900520065006036.076017.556011.071. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Mediumcab2468107.947.947.911. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUcab0.60751.2151.82252.433.03752.702.702.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Mediumbca61218243026.7426.7326.65

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUabc0.28450.5690.85351.1381.42251.260641.263821.26462MIN: 1.22MIN: 1.22MIN: 1.221. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc50100150200250214.03213.76213.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc51015202518.6818.7018.73MIN: 17.92 / MAX: 33.3MIN: 15.91 / MAX: 29.85MIN: 9.91 / MAX: 29.931. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Very Fastcab4812162015.5915.5915.55

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUcab300600900120015001475.071476.131478.75MIN: 1375.43 / MAX: 1527.68MIN: 1433.58 / MAX: 1527.68MIN: 1454.64 / MAX: 1526.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUbac60120180240300264.05263.66263.421. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUbac71421283530.2930.3330.36MIN: 15.7 / MAX: 49.76MIN: 20.9 / MAX: 47.18MIN: 15.75 / MAX: 49.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Ultra Fastcba4812162018.1518.1118.11

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUabc0.79311.58622.37933.17243.96553.518943.519893.52483MIN: 3.38MIN: 3.37MIN: 3.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUcba50010001500200025002506.422507.812509.26MIN: 2333.15 / MAX: 2917.56MIN: 2395.64 / MAX: 2630.97MIN: 2380.16 / MAX: 2697.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUcba2468106.538836.543396.54459MIN: 6.46MIN: 6.48MIN: 6.481. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUabc0.2970.5940.8911.1881.4851.321.321.32MIN: 0.74 / MAX: 10.12MIN: 0.73 / MAX: 10.35MIN: 0.73 / MAX: 10.141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Slowcba1.02382.04763.07144.09525.1194.554.554.55

52 Results Shown

oneDNN:
  Convolution Batch Shapes Auto - f32 - CPU
  Recurrent Neural Network Training - f32 - CPU
  IP Shapes 3D - f32 - CPU
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    FPS
    ms
  Vehicle Detection FP16 - CPU:
    FPS
    ms
  Person Detection FP16 - CPU:
    FPS
    ms
oneDNN
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
Kvazaar
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
Kvazaar:
  Bosphorus 1080p - Super Fast
  Bosphorus 4K - Super Fast
  Bosphorus 1080p - Medium
oneDNN
Kvazaar:
  Bosphorus 1080p - Very Fast
  Bosphorus 1080p - Slow
  Bosphorus 4K - Slow
uvg266
Kvazaar
OpenVINO:
  Vehicle Detection FP16-INT8 - CPU:
    FPS
    ms
uvg266
OpenVINO
uvg266
Kvazaar
uvg266:
  Bosphorus 1080p - Very Fast
  Bosphorus 4K - Super Fast
  Bosphorus 1080p - Slow
OpenVINO
Kvazaar
OpenVINO
uvg266
oneDNN
OpenVINO:
  Weld Porosity Detection FP16 - CPU:
    FPS
    ms
uvg266
OpenVINO:
  Face Detection FP16-INT8 - CPU
  Weld Porosity Detection FP16-INT8 - CPU
  Weld Porosity Detection FP16-INT8 - CPU
uvg266
oneDNN
OpenVINO
oneDNN
OpenVINO
uvg266