r 2 x Intel Xeon Gold 5220R testing with a TYAN S7106 (V2.01.B40 BIOS) and llvmpipe on Ubuntu 20.04 via the Phoronix Test Suite.
Compare your own system(s) to this result file with the
Phoronix Test Suite by running the command:
phoronix-test-suite benchmark 2009245-FI-R9014690061 r1 Processor: 2 x Intel Xeon Gold 5220R @ 3.90GHz (36 Cores / 72 Threads), Motherboard: TYAN S7106 (V2.01.B40 BIOS), Chipset: Intel Sky Lake-E DMI3 Registers, Memory: 94GB, Disk: 500GB Samsung SSD 860, Graphics: llvmpipe, Monitor: VE228, Network: 2 x Intel I210 + 2 x QLogic cLOM8214 1/10GbE
OS: Ubuntu 20.04, Kernel: 5.9.0-050900rc6-generic (x86_64) 20200920, Desktop: GNOME Shell 3.36.4, Display Server: X Server 1.20.8, Display Driver: modesetting 1.20.8, OpenGL: 3.3 Mesa 20.0.4 (LLVM 9.0.1 256 bits), Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1920x1080
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: intel_pstate powersave - CPU Microcode: 0x5002f01Python Notes: Python 3.8.2Security Notes: itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling + srbds: Not affected + tsx_async_abort: Mitigation of TSX disabled
r OpenBenchmarking.org Phoronix Test Suite 2 x Intel Xeon Gold 5220R @ 3.90GHz (36 Cores / 72 Threads) TYAN S7106 (V2.01.B40 BIOS) Intel Sky Lake-E DMI3 Registers 94GB 500GB Samsung SSD 860 llvmpipe VE228 2 x Intel I210 + 2 x QLogic cLOM8214 1/10GbE Ubuntu 20.04 5.9.0-050900rc6-generic (x86_64) 20200920 GNOME Shell 3.36.4 X Server 1.20.8 modesetting 1.20.8 3.3 Mesa 20.0.4 (LLVM 9.0.1 256 bits) GCC 9.3.0 ext4 1920x1080 Processor Motherboard Chipset Memory Disk Graphics Monitor Network OS Kernel Desktop Display Server Display Driver OpenGL Compiler File-System Screen Resolution R Benchmarks System Logs - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave - CPU Microcode: 0x5002f01 - Python 3.8.2 - itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling + srbds: Not affected + tsx_async_abort: Mitigation of TSX disabled
r influxdb: 1024 - 10000 - 2,5000,1 - 10000 influxdb: 64 - 10000 - 2,5000,1 - 10000 influxdb: 4 - 10000 - 2,5000,1 - 10000 opencv: DNN - Deep Neural Network blender: Pabellon Barcelona - CPU-Only blender: Barbershop - CPU-Only blender: Fishy Cat - CPU-Only blender: Classroom - CPU-Only blender: BMW27 - CPU-Only build-llvm: Time To Compile build-linux-kernel: Time To Compile aom-av1: Speed 8 Realtime aom-av1: Speed 6 Two-Pass aom-av1: Speed 6 Realtime aom-av1: Speed 4 Two-Pass aom-av1: Speed 0 Two-Pass onednn: Matrix Multiply Batch Shapes Transformer - bf16bf16bf16 - CPU onednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU onednn: Matrix Multiply Batch Shapes Transformer - f32 - CPU onednn: Deconvolution Batch deconv_3d - bf16bf16bf16 - CPU onednn: Deconvolution Batch deconv_1d - bf16bf16bf16 - CPU onednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPU onednn: Recurrent Neural Network Inference - f32 - CPU onednn: Recurrent Neural Network Training - f32 - CPU onednn: Deconvolution Batch deconv_3d - u8s8f32 - CPU onednn: Deconvolution Batch deconv_1d - u8s8f32 - CPU onednn: Convolution Batch Shapes Auto - u8s8f32 - CPU onednn: Deconvolution Batch deconv_3d - f32 - CPU onednn: Deconvolution Batch deconv_1d - f32 - CPU onednn: Convolution Batch Shapes Auto - f32 - CPU onednn: IP Batch All - bf16bf16bf16 - CPU onednn: IP Batch 1D - bf16bf16bf16 - CPU onednn: IP Batch All - u8s8f32 - CPU onednn: IP Batch 1D - u8s8f32 - CPU onednn: IP Batch All - f32 - CPU onednn: IP Batch 1D - f32 - CPU kripke: r1 1363127.8 1296920.4 726686.3 10566 193.19 249.29 84.22 173.91 60.49 285.574 38.431 23.41 2.95 10.96 1.93 0.27 1.45436 0.296070 0.525698 9.47970 7.39126 6.39772 80.4353 224.994 0.691067 0.551345 7.05069 2.70059 1.96077 7.44916 51.3189 5.69301 6.75257 1.82044 27.3493 1.75730 46087163 OpenBenchmarking.org
InfluxDB This is a benchmark of the InfluxDB open-source time-series database optimized for fast, high-availability storage for IoT and other use-cases. The InfluxDB test profile makes use of InfluxDB Inch for facilitating the benchmarks. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org val/sec, More Is Better InfluxDB 1.8.2 Concurrent Streams: 1024 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000 r1 300K 600K 900K 1200K 1500K SE +/- 2428.68, N = 3 1363127.8
OpenBenchmarking.org val/sec, More Is Better InfluxDB 1.8.2 Concurrent Streams: 64 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000 r1 300K 600K 900K 1200K 1500K SE +/- 2137.69, N = 3 1296920.4
OpenBenchmarking.org val/sec, More Is Better InfluxDB 1.8.2 Concurrent Streams: 4 - Batch Size: 10000 - Tags: 2,5000,1 - Points Per Series: 10000 r1 160K 320K 480K 640K 800K SE +/- 11513.86, N = 12 726686.3
OpenCV This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better OpenCV 4.4 Test: DNN - Deep Neural Network r1 2K 4K 6K 8K 10K SE +/- 24.58, N = 3 10566 1. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared
OpenBenchmarking.org Frames Per Second, More Is Better AOM AV1 2.0 Encoder Mode: Speed 6 Two-Pass r1 0.6638 1.3276 1.9914 2.6552 3.319 SE +/- 0.01, N = 3 2.95 1. (CXX) g++ options: -O3 -std=c++11 -U_FORTIFY_SOURCE -lm -lpthread
OpenBenchmarking.org Frames Per Second, More Is Better AOM AV1 2.0 Encoder Mode: Speed 6 Realtime r1 3 6 9 12 15 SE +/- 0.11, N = 3 10.96 1. (CXX) g++ options: -O3 -std=c++11 -U_FORTIFY_SOURCE -lm -lpthread
OpenBenchmarking.org Frames Per Second, More Is Better AOM AV1 2.0 Encoder Mode: Speed 4 Two-Pass r1 0.4343 0.8686 1.3029 1.7372 2.1715 SE +/- 0.00, N = 3 1.93 1. (CXX) g++ options: -O3 -std=c++11 -U_FORTIFY_SOURCE -lm -lpthread
OpenBenchmarking.org Frames Per Second, More Is Better AOM AV1 2.0 Encoder Mode: Speed 0 Two-Pass r1 0.0608 0.1216 0.1824 0.2432 0.304 SE +/- 0.00, N = 3 0.27 1. (CXX) g++ options: -O3 -std=c++11 -U_FORTIFY_SOURCE -lm -lpthread
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the oneAPI initiative. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU r1 0.3272 0.6544 0.9816 1.3088 1.636 SE +/- 0.00040, N = 3 1.45436 MIN: 1.41 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU r1 0.0666 0.1332 0.1998 0.2664 0.333 SE +/- 0.003451, N = 3 0.296070 MIN: 0.28 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU r1 0.1183 0.2366 0.3549 0.4732 0.5915 SE +/- 0.001570, N = 3 0.525698 MIN: 0.5 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: bf16bf16bf16 - Engine: CPU r1 3 6 9 12 15 SE +/- 0.01613, N = 3 9.47970 MIN: 9.34 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: bf16bf16bf16 - Engine: CPU r1 2 4 6 8 10 SE +/- 0.00358, N = 3 7.39126 MIN: 7.23 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU r1 2 4 6 8 10 SE +/- 0.01234, N = 3 6.39772 MIN: 6.3 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU r1 20 40 60 80 100 SE +/- 0.64, N = 3 80.44 MIN: 78.21 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU r1 50 100 150 200 250 SE +/- 0.48, N = 3 224.99 MIN: 217.53 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32 - Engine: CPU r1 0.1555 0.311 0.4665 0.622 0.7775 SE +/- 0.000701, N = 3 0.691067 MIN: 0.68 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32 - Engine: CPU r1 0.1241 0.2482 0.3723 0.4964 0.6205 SE +/- 0.000284, N = 3 0.551345 MIN: 0.53 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU r1 2 4 6 8 10 SE +/- 0.01233, N = 3 7.05069 MIN: 6.97 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: f32 - Engine: CPU r1 0.6076 1.2152 1.8228 2.4304 3.038 SE +/- 0.00254, N = 3 2.70059 MIN: 2.66 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: f32 - Engine: CPU r1 0.4412 0.8824 1.3236 1.7648 2.206 SE +/- 0.00222, N = 3 1.96077 MIN: 1.91 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU r1 2 4 6 8 10 SE +/- 0.01010, N = 3 7.44916 MIN: 7.36 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch All - Data Type: bf16bf16bf16 - Engine: CPU r1 12 24 36 48 60 SE +/- 0.04, N = 3 51.32 MIN: 50.32 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch 1D - Data Type: bf16bf16bf16 - Engine: CPU r1 1.2809 2.5618 3.8427 5.1236 6.4045 SE +/- 0.00435, N = 3 5.69301 MIN: 5.49 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch All - Data Type: u8s8f32 - Engine: CPU r1 2 4 6 8 10 SE +/- 0.00688, N = 3 6.75257 MIN: 6.56 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch 1D - Data Type: u8s8f32 - Engine: CPU r1 0.4096 0.8192 1.2288 1.6384 2.048 SE +/- 0.00590, N = 3 1.82044 MIN: 1.68 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch All - Data Type: f32 - Engine: CPU r1 6 12 18 24 30 SE +/- 0.03, N = 3 27.35 MIN: 26.67 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 1.5 Harness: IP Batch 1D - Data Type: f32 - Engine: CPU r1 0.3954 0.7908 1.1862 1.5816 1.977 SE +/- 0.00310, N = 3 1.75730 MIN: 1.67 1. (CXX) g++ options: -O3 -march=native -std=c++11 -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl
Kripke Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary purpose is to research how data layout, programming paradigms and architectures effect the implementation and performance of Sn transport. Kripke is developed by LLNL. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Throughput FoM, More Is Better Kripke 1.2.4 r1 10M 20M 30M 40M 50M SE +/- 1014181.41, N = 12 46087163 1. (CXX) g++ options: -O3 -fopenmp
r1 Processor: 2 x Intel Xeon Gold 5220R @ 3.90GHz (36 Cores / 72 Threads), Motherboard: TYAN S7106 (V2.01.B40 BIOS), Chipset: Intel Sky Lake-E DMI3 Registers, Memory: 94GB, Disk: 500GB Samsung SSD 860, Graphics: llvmpipe, Monitor: VE228, Network: 2 x Intel I210 + 2 x QLogic cLOM8214 1/10GbE
OS: Ubuntu 20.04, Kernel: 5.9.0-050900rc6-generic (x86_64) 20200920, Desktop: GNOME Shell 3.36.4, Display Server: X Server 1.20.8, Display Driver: modesetting 1.20.8, OpenGL: 3.3 Mesa 20.0.4 (LLVM 9.0.1 256 bits), Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1920x1080
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: intel_pstate powersave - CPU Microcode: 0x5002f01Python Notes: Python 3.8.2Security Notes: itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling + srbds: Not affected + tsx_async_abort: Mitigation of TSX disabled
Testing initiated at 24 September 2020 08:50 by user phoronix.