Core i9 9900KS oneAPI

Intel Core i9-9900KS testing with a ASUS PRIME Z390-A (1302 BIOS) and ASUS Intel UHD 630 3GB on Ubuntu 20.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2004109-PTS-COREI99915
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Core i9 9900KS
April 10 2020
  43 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


Core i9 9900KS oneAPIOpenBenchmarking.orgPhoronix Test SuiteIntel Core i9-9900KS @ 5.00GHz (8 Cores / 16 Threads)ASUS PRIME Z390-A (1302 BIOS)Intel Cannon Lake PCH16GBSamsung SSD 970 EVO 250GBASUS Intel UHD 630 3GB (1200MHz)Realtek ALC1220ASUS MG28UIntel I219-VUbuntu 20.045.4.0-21-generic (x86_64)GNOME Shell 3.36.0X Server 1.20.7modesetting 1.20.74.6 Mesa 20.0.4GCC 9.3.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen ResolutionCore I9 9900KS OneAPI BenchmarksSystem Logs- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave - CPU Microcode: 0xca- + Python 3.8.2- itlb_multihit: KVM: Vulnerable + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling + tsx_async_abort: Mitigation of TSX disabled

Core i9 9900KS oneAPImkl-dnn: IP Batch 1D - f32mkl-dnn: IP Batch All - f32mkl-dnn: IP Batch 1D - u8s8f32mkl-dnn: IP Batch All - u8s8f32mkl-dnn: Deconvolution Batch deconv_1d - f32mkl-dnn: Deconvolution Batch deconv_3d - f32mkl-dnn: Deconvolution Batch deconv_1d - u8s8f32mkl-dnn: Deconvolution Batch deconv_3d - u8s8f32mkl-dnn: Recurrent Neural Network Training - f32mkl-dnn: Recurrent Neural Network Inference - f32embree: Pathtracer - Crownembree: Pathtracer ISPC - Crownembree: Pathtracer - Asian Dragonembree: Pathtracer - Asian Dragon Objembree: Pathtracer ISPC - Asian Dragonembree: Pathtracer ISPC - Asian Dragon Objoidn: Memorialyafaray: Total Time For Sample SceneCore i9 9900KS3.7875767.17341.7042425.28184.212876.47104145.7243.22121220.61233.722210.873312.227912.582411.630614.772613.16848.18157.489OpenBenchmarking.org

oneDNN MKL-DNN

This is a test of the Intel oneDNN (formerly DNNL / Deep Neural Network Library / MKL-DNN) as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: IP Batch 1D - Data Type: f32Core i9 9900KS0.85221.70442.55663.40884.261SE +/- 0.00847, N = 33.78757MIN: 3.481. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: IP Batch All - Data Type: f32Core i9 9900KS1530456075SE +/- 0.10, N = 367.17MIN: 63.031. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: IP Batch 1D - Data Type: u8s8f32Core i9 9900KS0.38350.7671.15051.5341.9175SE +/- 0.00128, N = 31.70424MIN: 1.521. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: IP Batch All - Data Type: u8s8f32Core i9 9900KS612182430SE +/- 0.02, N = 325.28MIN: 23.171. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Deconvolution Batch deconv_1d - Data Type: f32Core i9 9900KS0.94791.89582.84373.79164.7395SE +/- 0.00545, N = 34.21287MIN: 3.831. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Deconvolution Batch deconv_3d - Data Type: f32Core i9 9900KS246810SE +/- 0.00493, N = 36.47104MIN: 5.831. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32Core i9 9900KS306090120150SE +/- 1.16, N = 14145.72MIN: 133.981. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32Core i9 9900KS0.72481.44962.17442.89923.624SE +/- 0.00635, N = 33.22121MIN: 3.011. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Recurrent Neural Network Training - Data Type: f32Core i9 9900KS50100150200250SE +/- 0.33, N = 3220.61MIN: 215.481. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN MKL-DNN 1.3Harness: Recurrent Neural Network Inference - Data Type: f32Core i9 9900KS816243240SE +/- 0.15, N = 333.72MIN: 32.491. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer - Model: CrownCore i9 9900KS3691215SE +/- 0.02, N = 310.87MIN: 10.77 / MAX: 11.87

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer ISPC - Model: CrownCore i9 9900KS3691215SE +/- 0.04, N = 312.23MIN: 12.06 / MAX: 12.88

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer - Model: Asian DragonCore i9 9900KS3691215SE +/- 0.01, N = 312.58MIN: 12.5 / MAX: 13.36

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer - Model: Asian Dragon ObjCore i9 9900KS3691215SE +/- 0.13, N = 311.63MIN: 11.22 / MAX: 12.5

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer ISPC - Model: Asian DragonCore i9 9900KS48121620SE +/- 0.05, N = 314.77MIN: 14.6 / MAX: 15.16

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 3.9.0Binary: Pathtracer ISPC - Model: Asian Dragon ObjCore i9 9900KS3691215SE +/- 0.04, N = 313.17MIN: 13.01 / MAX: 13.73

Intel Open Image Denoise

Open Image Denoise is a denoising library for ray-tracing and part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 1.2.0Scene: MemorialCore i9 9900KS246810SE +/- 0.00, N = 38.18

YafaRay

YafaRay is an open-source physically based montecarlo ray-tracing engine. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterYafaRay 3.4.1Total Time For Sample SceneCore i9 9900KS306090120150SE +/- 0.36, N = 3157.491. (CXX) g++ options: -std=c++11 -O3 -ffast-math -rdynamic -ldl -lImath -lIlmImf -lIex -lHalf -lz -lIlmThread -lxml2 -lfreetype -lpthread