MKL-DNN DNNL Ice Lake

Intel Core i7-1065G7 testing with a Dell 06CDVY (1.0.9 BIOS) and Intel Iris Plus 3GB on Ubuntu 19.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 1910274-HU-MKLDNNDNN96
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Ice Lake
October 27 2019
  4 Hours, 11 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


MKL-DNN DNNL Ice LakeOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-1065G7 @ 3.90GHz (4 Cores / 8 Threads)Dell 06CDVY (1.0.9 BIOS)Intel Device 34ef16384MBKBG40ZPZ512G NVMe TOSHIBA 512GBIntel Iris Plus 3GB (1100MHz)Realtek ALC289Intel Device 34f0Ubuntu 19.105.3.0-19-generic (x86_64)GNOME Shell 3.34.1X Server 1.20.5modesetting 1.20.54.6 Mesa 19.3.0-devel (git-1961653 2019-10-24 eoan-oibaf-ppa)1.1.102GCC 9.2.1 20191008ext41920x1200ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLVulkanCompilerFile-SystemScreen ResolutionMKL-DNN DNNL Ice Lake BenchmarksSystem Logs- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave- l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling

MKL-DNN DNNL Ice Lakemkl-dnn: Convolution Batch conv_googlenet_v3 - bf16bf16bf16mkl-dnn: Deconvolution Batch deconv_all - bf16bf16bf16mkl-dnn: Convolution Batch conv_googlenet_v3 - u8s8f32mkl-dnn: Convolution Batch conv_alexnet - bf16bf16bf16mkl-dnn: Deconvolution Batch deconv_3d - bf16bf16bf16mkl-dnn: Deconvolution Batch deconv_1d - bf16bf16bf16mkl-dnn: Convolution Batch conv_googlenet_v3 - f32mkl-dnn: Convolution Batch conv_all - bf16bf16bf16mkl-dnn: Convolution Batch conv_alexnet - u8s8f32mkl-dnn: Convolution Batch conv_3d - bf16bf16bf16mkl-dnn: Recurrent Neural Network Training - f32mkl-dnn: Deconvolution Batch deconv_3d - u8s8f32mkl-dnn: Deconvolution Batch deconv_1d - u8s8f32mkl-dnn: Deconvolution Batch deconv_all - f32mkl-dnn: Convolution Batch conv_all - u8s8f32mkl-dnn: Convolution Batch conv_alexnet - f32mkl-dnn: Deconvolution Batch deconv_3d - f32mkl-dnn: Deconvolution Batch deconv_1d - f32mkl-dnn: Convolution Batch conv_3d - u8s8f32mkl-dnn: Convolution Batch conv_all - f32mkl-dnn: Convolution Batch conv_3d - f32mkl-dnn: IP Batch All - bf16bf16bf16mkl-dnn: IP Batch All - u8s8f32mkl-dnn: IP Batch 1D - u8s8f32mkl-dnn: IP Batch All - f32mkl-dnn: IP Batch 1D - bf16bf16bf16mkl-dnn: IP Batch 1D - f32Ice Lake2000.1929589.37146.847964.6950.2469.87571.2143628.27329.57163.08827.9432198.433.927212.4627762.501235.7413.6415.6856201.7310231.6350.1738.6513.493.8822.4933.8611.76OpenBenchmarking.org

MKL-DNN DNNL

This is a test of the Intel MKL-DNN (DNNL / Deep Neural Network Library) as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_googlenet_v3 - Data Type: bf16bf16bf16Ice Lake400800120016002000SE +/- 23.35, N = 62000.19MIN: 1807.931. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_all - Data Type: bf16bf16bf16Ice Lake6K12K18K24K30KSE +/- 6.03, N = 329589.37MIN: 28826.91. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_googlenet_v3 - Data Type: u8s8f32Ice Lake306090120150SE +/- 1.07, N = 3146.84MIN: 116.961. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_alexnet - Data Type: bf16bf16bf16Ice Lake2K4K6K8K10KSE +/- 58.94, N = 37964.69MIN: 7130.411. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_3d - Data Type: bf16bf16bf16Ice Lake1122334455SE +/- 0.64, N = 1550.24MIN: 43.711. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_1d - Data Type: bf16bf16bf16Ice Lake1632486480SE +/- 1.18, N = 1269.87MIN: 47.281. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_googlenet_v3 - Data Type: f32Ice Lake120240360480600SE +/- 2.81, N = 3571.21MIN: 526.781. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_all - Data Type: bf16bf16bf16Ice Lake9K18K27K36K45KSE +/- 9.24, N = 343628.27MIN: 42847.81. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_alexnet - Data Type: u8s8f32Ice Lake70140210280350SE +/- 3.15, N = 9329.57MIN: 239.131. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_3d - Data Type: bf16bf16bf16Ice Lake4080120160200SE +/- 1.23, N = 3163.08MIN: 141.861. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Recurrent Neural Network Training - Data Type: f32Ice Lake2004006008001000SE +/- 2.97, N = 3827.94MIN: 792.761. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32Ice Lake7K14K21K28K35KSE +/- 3.27, N = 332198.43MIN: 32160.31. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32Ice Lake0.8821.7642.6463.5284.41SE +/- 0.05, N = 33.92MIN: 3.011. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_all - Data Type: f32Ice Lake15003000450060007500SE +/- 7.90, N = 37212.46MIN: 7015.131. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_all - Data Type: u8s8f32Ice Lake6K12K18K24K30KSE +/- 26.70, N = 327762.50MIN: 273881. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_alexnet - Data Type: f32Ice Lake30060090012001500SE +/- 17.36, N = 41235.74MIN: 1036.311. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_3d - Data Type: f32Ice Lake48121620SE +/- 0.20, N = 1513.64MIN: 10.811. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Deconvolution Batch deconv_1d - Data Type: f32Ice Lake48121620SE +/- 0.17, N = 315.68MIN: 13.771. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_3d - Data Type: u8s8f32Ice Lake12K24K36K48K60KSE +/- 22.81, N = 356201.73MIN: 55973.91. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_all - Data Type: f32Ice Lake2K4K6K8K10KSE +/- 6.19, N = 310231.63MIN: 9983.731. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: Convolution Batch conv_3d - Data Type: f32Ice Lake1122334455SE +/- 0.29, N = 350.17MIN: 44.851. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch All - Data Type: bf16bf16bf16Ice Lake918273645SE +/- 0.57, N = 338.65MIN: 22.311. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch All - Data Type: u8s8f32Ice Lake3691215SE +/- 0.03, N = 313.49MIN: 11.161. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch 1D - Data Type: u8s8f32Ice Lake0.8731.7462.6193.4924.365SE +/- 0.05, N = 123.88MIN: 2.461. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch All - Data Type: f32Ice Lake510152025SE +/- 0.03, N = 322.49MIN: 20.251. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch 1D - Data Type: bf16bf16bf16Ice Lake816243240SE +/- 0.78, N = 1233.86MIN: 22.491. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl

OpenBenchmarking.orgms, Fewer Is BetterMKL-DNN DNNL 1.1Harness: IP Batch 1D - Data Type: f32Ice Lake3691215SE +/- 0.43, N = 1211.76MIN: 6.551. (CXX) g++ options: -O3 -march=native -std=c++11 -msse4.1 -fPIC -fopenmp -pie -lpthread -ldl