Jetson Nano Developer Kit

Benchmarks for a future article on Phoronix.com.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 1903186-HV-JETSONNAN05
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results

Limit displaying results to tests within:

C/C++ Compiler Tests 4 Tests
Compression Tests 2 Tests
CPU Massive 8 Tests
Creator Workloads 4 Tests
Multi-Core 5 Tests
Programmer / Developer System Benchmarks 2 Tests
Python Tests 2 Tests
Renderers 2 Tests
Server CPU Tests 6 Tests
Single-Threaded 4 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Jetson TX1 Max-P
March 17 2019
  1 Hour, 20 Minutes
Jetson TX2 Max-Q
March 16 2019
  7 Hours, 23 Minutes
Jetson TX2 Max-P
March 15 2019
  6 Hours, 25 Minutes
Jetson AGX Xavier
March 15 2019
  4 Hours, 1 Minute
Jetson Nano
March 17 2019
  7 Hours, 18 Minutes
Raspberry Pi 3 Model B+
March 16 2019
  4 Hours, 32 Minutes
ASUS TinkerBoard
March 16 2019
  7 Hours, 20 Minutes
ODROID-XU4
March 17 2019
  4 Hours, 21 Minutes
Invert Hiding All Results Option
  5 Hours, 20 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):


Jetson Nano Developer KitProcessorMotherboardMemoryDiskGraphicsMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLVulkanCompilerFile-SystemScreen ResolutionJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4ARMv8 rev 1 @ 1.73GHz (4 Cores)jetson_tx14096MB16GB 016G32NVIDIA Tegra X1VE228Ubuntu 16.044.4.38-tegra (aarch64)Unity 7.4.5X Server 1.18.4NVIDIA 28.1.04.5.01.0.8GCC 5.4.0 20160609ext41920x1080ARMv8 rev 3 @ 1.27GHz (4 Cores / 6 Threads)quill8192MB31GB 032G34NVIDIA TEGRAUnity 7.4.0NVIDIA 28.2.1GCC 5.4.0 20160609 + CUDA 9.0ARMv8 rev 3 @ 2.04GHz (4 Cores / 6 Threads)ARMv8 rev 0 @ 2.27GHz (8 Cores)jetson-xavier16384MB31GB HBG4a2NVIDIA Tegra XavierUbuntu 18.044.9.108-tegra (aarch64)Unity 7.5.0X Server 1.19.6NVIDIA 31.0.24.6.01.1.76GCC 7.3.0 + CUDA 10.0ARMv8 rev 1 @ 1.43GHz (4 Cores)jetson-nano4096MB32GB GB1QTNVIDIA TEGRARealtek RTL8111/8168/84114.9.140-tegra (aarch64)NVIDIA 1.0.01.1.85ARMv7 rev 4 @ 1.40GHz (4 Cores)BCM2835 Raspberry Pi 3 Model B Plus Rev 1.3926MB32GB GB2MWBCM2708Raspbian 9.64.19.23-v7+ (armv7l)LXDEX Server 1.19.2GCC 6.3.0 20170516656x416ARMv7 rev 1 @ 1.80GHz (4 Cores)Rockchip (Device Tree)2048MB32GB GB1QTDebian 9.04.4.16-00006-g4431f98-dirty (armv7l)X Server 1.18.41024x768ARMv7 rev 3 @ 1.50GHz (8 Cores)ODROID-XU4 Hardkernel Odroid XU416GB AJTD4Rllvmpipe 2GBVE228Ubuntu 18.044.14.37-135 (armv7l)X Server 1.19.63.3 Mesa 18.0.0-rc5 (LLVM 6.0 128 bits)GCC 7.3.01920x1080OpenBenchmarking.orgCompiler Details- Jetson TX1 Max-P: --build=aarch64-linux-gnu --disable-browser-plugin --disable-libquadmath --disable-werror --enable-checking=release --enable-clocale=gnu --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-gtk-cairo --enable-java-awt=gtk --enable-java-home --enable-languages=c,ada,c++,java,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --target=aarch64-linux-gnu --with-arch-directory=aarch64 --with-default-libstdcxx-abi=new -v - Jetson TX2 Max-Q: --build=aarch64-linux-gnu --disable-browser-plugin --disable-libquadmath --disable-werror --enable-checking=release --enable-clocale=gnu --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-gtk-cairo --enable-java-awt=gtk --enable-java-home --enable-languages=c,ada,c++,java,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --target=aarch64-linux-gnu --with-arch-directory=aarch64 --with-default-libstdcxx-abi=new -v - Jetson TX2 Max-P: --build=aarch64-linux-gnu --disable-browser-plugin --disable-libquadmath --disable-werror --enable-checking=release --enable-clocale=gnu --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-gtk-cairo --enable-java-awt=gtk --enable-java-home --enable-languages=c,ada,c++,java,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --target=aarch64-linux-gnu --with-arch-directory=aarch64 --with-default-libstdcxx-abi=new -v - Jetson AGX Xavier: --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-default-libstdcxx-abi=new --with-gcc-major-version-only -v - Jetson Nano: --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-default-libstdcxx-abi=new --with-gcc-major-version-only -v - Raspberry Pi 3 Model B+: --build=arm-linux-gnueabihf --disable-browser-plugin --disable-libitm --disable-libquadmath --disable-sjlj-exceptions --enable-checking=release --enable-clocale=gnu --enable-gnu-unique-object --enable-gtk-cairo --enable-java-awt=gtk --enable-java-home --enable-languages=c,ada,c++,java,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=arm-linux-gnueabihf --program-prefix=arm-linux-gnueabihf- --target=arm-linux-gnueabihf --with-arch-directory=arm --with-arch=armv6 --with-default-libstdcxx-abi=new --with-float=hard --with-fpu=vfp --with-target-system-zlib -v - ASUS TinkerBoard: --build=arm-linux-gnueabihf --disable-browser-plugin --disable-libitm --disable-libquadmath --disable-sjlj-exceptions --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-gtk-cairo --enable-java-awt=gtk --enable-java-home --enable-languages=c,ada,c++,java,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=arm-linux-gnueabihf --program-prefix=arm-linux-gnueabihf- --target=arm-linux-gnueabihf --with-arch-directory=arm --with-arch=armv7-a --with-default-libstdcxx-abi=new --with-float=hard --with-fpu=vfpv3-d16 --with-mode=thumb --with-target-system-zlib -v - ODROID-XU4: --build=arm-linux-gnueabihf --disable-libitm --disable-libquadmath --disable-libquadmath-support --disable-sjlj-exceptions --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-multilib --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=arm-linux-gnueabihf --program-prefix=arm-linux-gnueabihf- --target=arm-linux-gnueabihf --with-arch=armv7-a --with-default-libstdcxx-abi=new --with-float=hard --with-fpu=vfpv3-d16 --with-gcc-major-version-only --with-mode=thumb --with-target-system-zlib -v Processor Details- Jetson TX1 Max-P: Scaling Governor: tegra-cpufreq interactive- Jetson TX2 Max-Q: Scaling Governor: tegra_cpufreq schedutil- Jetson TX2 Max-P: Scaling Governor: tegra_cpufreq schedutil- Jetson AGX Xavier: Scaling Governor: tegra_cpufreq schedutil- Jetson Nano: Scaling Governor: tegra-cpufreq schedutil- Raspberry Pi 3 Model B+: Scaling Governor: BCM2835 Freq ondemand- ASUS TinkerBoard: Scaling Governor: cpufreq-dt interactive- ODROID-XU4: Scaling Governor: cpufreq-dt ondemandPython Details- Jetson TX1 Max-P: Python 2.7.12 + Python 3.5.2- Jetson TX2 Max-Q: Python 2.7.12 + Python 3.5.2- Jetson TX2 Max-P: Python 2.7.12 + Python 3.5.2- Jetson AGX Xavier: Python 2.7.15rc1 + Python 3.6.7- Jetson Nano: Python 2.7.15rc1 + Python 3.6.7- Raspberry Pi 3 Model B+: Python 2.7.13 + Python 3.5.3- ASUS TinkerBoard: Python 2.7.13 + Python 3.5.3- ODROID-XU4: Python 2.7.15rc1 + Python 3.6.7Kernel Details- ODROID-XU4: usbhid.quirks=0x0eef:0x0005:0x0004Graphics Details- ODROID-XU4: EXA

Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4Logarithmic Result OverviewPhoronix Test Suite 10.6.07-Zip CompressionTTSIOD 3D RendererPyBenchFLAC Audio EncodingRust Prime BenchmarkC-Ray

Jetson Nano Developer Kitcuda-mini-nbody: Originalglmark2: 1920 x 1080tensorrt-inference: VGG16 - FP16 - 4 - Disabledtensorrt-inference: VGG16 - INT8 - 4 - Disabledtensorrt-inference: VGG19 - FP16 - 4 - Disabledtensorrt-inference: VGG19 - INT8 - 4 - Disabledtensorrt-inference: VGG16 - FP16 - 32 - Disabledtensorrt-inference: VGG16 - INT8 - 32 - Disabledtensorrt-inference: VGG19 - FP16 - 32 - Disabledtensorrt-inference: VGG19 - INT8 - 32 - Disabledtensorrt-inference: AlexNet - FP16 - 4 - Disabledtensorrt-inference: AlexNet - INT8 - 4 - Disabledtensorrt-inference: AlexNet - FP16 - 32 - Disabledtensorrt-inference: AlexNet - INT8 - 32 - Disabledtensorrt-inference: ResNet50 - FP16 - 4 - Disabledtensorrt-inference: ResNet50 - INT8 - 4 - Disabledtensorrt-inference: GoogleNet - FP16 - 4 - Disabledtensorrt-inference: GoogleNet - INT8 - 4 - Disabledtensorrt-inference: ResNet152 - FP16 - 4 - Disabledtensorrt-inference: ResNet152 - INT8 - 4 - Disabledtensorrt-inference: ResNet50 - FP16 - 32 - Disabledtensorrt-inference: ResNet50 - INT8 - 32 - Disabledtensorrt-inference: GoogleNet - FP16 - 32 - Disabledtensorrt-inference: GoogleNet - INT8 - 32 - Disabledtensorrt-inference: ResNet152 - FP16 - 32 - Disabledtensorrt-inference: ResNet152 - INT8 - 32 - Disabledlczero: BLASlczero: CUDA + cuDNNlczero: CUDA + cuDNN FP16ttsiod-renderer: Phong Rendering With Soft-Shadow Mappingcompress-7zip: Compress Speed Testc-ray: Total Time - 4K, 16 Rays Per Pixelrust-prime: Prime Number Test To 200,000,000compress-zstd: Compressing ubuntu-16.04.3-server-i386.img, Compression Level 19encode-flac: WAV To FLACopencv-bench: pybench: Total For Average Test Timestesseract-ocr: Time To OCR 7 ImagesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU445.094508753128.45145.8079.2063396.7725.9914.2421.0411.4529.8315.7923.9412.5921614837423772.0139.1515688.8827.3414.5086.0847.1517910432.6717.3628.853294869170.25253.80104.2849387358.2432.6417.5626.5614.3236.8719.9129.8315.9226418446230192.2849.9719711335.1118.2911159.6923313041.9122.0749.265593585104.96144.9765.07296540847.132876208.76303.78172.50265.81247.95475.08203.96394.661200114320383143547.50902.787961146224.19372.736361215.0810061693259.82493.2247.629532515.011331921235532.3780.0654.47128300771.944.0764614.3511.5911884.1020112841.0420.9683.3747.8215.767.7646.5125.0898.9355.6617.3815.3714040.944049921150.19129.87104.77271.047084132.6717.66201320301097.69342.23339.532.742091321.22283617181821.05496.62279.051150241.964120827574.1197.03520.705009180.66OpenBenchmarking.org

CUDA Mini-Nbody

OpenBenchmarking.org(NBody^2)/s, More Is BetterCUDA Mini-Nbody 2015-11-10Test: OriginalJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano1122334455SE +/- 0.03, N = 3SE +/- 0.01, N = 3SE +/- 0.00, N = 3SE +/- 0.01, N = 36.778.2447.134.07
OpenBenchmarking.org(NBody^2)/s, More Is BetterCUDA Mini-Nbody 2015-11-10Test: OriginalJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano1020304050Min: 6.71 / Avg: 6.77 / Max: 6.8Min: 8.23 / Avg: 8.24 / Max: 8.25Min: 47.12 / Avg: 47.13 / Max: 47.14Min: 4.07 / Avg: 4.07 / Max: 4.09

GLmark2

This is a test of any system-installed GLMark2 OpenGL benchmark. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterGLmark2Resolution: 1920 x 1080Jetson AGX XavierJetson Nano60012001800240030002876646

NVIDIA TensorRT Inference

This test profile uses any existing system installation of NVIDIA TensorRT for carrying out inference benchmarks with various neural networks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano50100150200250SE +/- 0.13, N = 3SE +/- 0.50, N = 4SE +/- 0.10, N = 3SE +/- 0.02, N = 225.9932.64208.7614.35
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano4080120160200Min: 25.73 / Avg: 25.99 / Max: 26.17Min: 31.7 / Avg: 32.64 / Max: 33.98Min: 208.63 / Avg: 208.76 / Max: 208.96Min: 14.33 / Avg: 14.35 / Max: 14.37

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier70140210280350SE +/- 0.20, N = 5SE +/- 0.25, N = 6SE +/- 0.46, N = 314.2417.56303.78
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier50100150200250Min: 13.46 / Avg: 14.24 / Max: 14.6Min: 16.36 / Avg: 17.56 / Max: 18.11Min: 303.01 / Avg: 303.78 / Max: 304.61

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano4080120160200SE +/- 0.34, N = 3SE +/- 0.38, N = 3SE +/- 0.50, N = 3SE +/- 0.05, N = 221.0426.56172.5011.59
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano306090120150Min: 20.54 / Avg: 21.04 / Max: 21.7Min: 25.87 / Avg: 26.56 / Max: 27.2Min: 171.71 / Avg: 172.5 / Max: 173.43Min: 11.54 / Avg: 11.59 / Max: 11.64

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier60120180240300SE +/- 0.23, N = 3SE +/- 0.25, N = 4SE +/- 0.20, N = 311.4514.32265.81
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier50100150200250Min: 10.99 / Avg: 11.45 / Max: 11.69Min: 13.63 / Avg: 14.32 / Max: 14.8Min: 265.44 / Avg: 265.81 / Max: 266.11

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier50100150200250SE +/- 0.18, N = 3SE +/- 0.31, N = 3SE +/- 0.12, N = 329.8336.87247.95
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier4080120160200Min: 29.48 / Avg: 29.83 / Max: 30.12Min: 36.25 / Avg: 36.87 / Max: 37.19Min: 247.73 / Avg: 247.95 / Max: 248.14

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier100200300400500SE +/- 0.01, N = 3SE +/- 0.05, N = 3SE +/- 0.10, N = 315.7919.91475.08
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG16 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier80160240320400Min: 15.76 / Avg: 15.79 / Max: 15.81Min: 19.83 / Avg: 19.91 / Max: 19.99Min: 474.88 / Avg: 475.08 / Max: 475.2

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier4080120160200SE +/- 0.07, N = 3SE +/- 0.05, N = 3SE +/- 0.04, N = 323.9429.83203.96
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier4080120160200Min: 23.79 / Avg: 23.94 / Max: 24.04Min: 29.76 / Avg: 29.83 / Max: 29.94Min: 203.92 / Avg: 203.96 / Max: 204.03

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier90180270360450SE +/- 0.03, N = 3SE +/- 0.06, N = 3SE +/- 0.23, N = 312.5915.92394.66
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: VGG19 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier70140210280350Min: 12.53 / Avg: 12.59 / Max: 12.63Min: 15.81 / Avg: 15.92 / Max: 16Min: 394.4 / Avg: 394.66 / Max: 395.11

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano30060090012001500SE +/- 3.03, N = 6SE +/- 7.77, N = 12SE +/- 1.82, N = 3SE +/- 2.12, N = 122162641200118
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000Min: 202.59 / Avg: 216.45 / Max: 224.23Min: 222.34 / Avg: 263.9 / Max: 304.01Min: 1196.24 / Avg: 1199.87 / Max: 1201.91Min: 104.75 / Avg: 118.34 / Max: 127.58

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000SE +/- 0.91, N = 3SE +/- 2.79, N = 5SE +/- 2.59, N = 3SE +/- 0.72, N = 3148.00184.001143.0084.10
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000Min: 146.67 / Avg: 148.2 / Max: 149.83Min: 175.71 / Avg: 184.09 / Max: 192.25Min: 1138.12 / Avg: 1142.71 / Max: 1147.08Min: 82.88 / Avg: 84.1 / Max: 85.38

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano400800120016002000SE +/- 2.82, N = 3SE +/- 7.68, N = 12SE +/- 2.07, N = 3SE +/- 1.59, N = 33744622038201
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano400800120016002000Min: 368.3 / Avg: 373.57 / Max: 377.97Min: 418.29 / Avg: 461.97 / Max: 493.49Min: 2035.4 / Avg: 2038.31 / Max: 2042.31Min: 197.66 / Avg: 200.84 / Max: 202.54

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano7001400210028003500SE +/- 1.39, N = 3SE +/- 0.52, N = 3SE +/- 1.06, N = 3SE +/- 0.06, N = 32373013143128
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: AlexNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano5001000150020002500Min: 235.62 / Avg: 237.06 / Max: 239.84Min: 300.06 / Avg: 300.95 / Max: 301.86Min: 3140.95 / Avg: 3142.61 / Max: 3144.59Min: 127.47 / Avg: 127.59 / Max: 127.67

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano120240360480600SE +/- 1.10, N = 12SE +/- 1.32, N = 12SE +/- 0.03, N = 3SE +/- 0.25, N = 372.0192.28547.5041.04
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano100200300400500Min: 65.28 / Avg: 72.01 / Max: 77.6Min: 85.37 / Avg: 92.28 / Max: 100.02Min: 547.46 / Avg: 547.5 / Max: 547.56Min: 40.75 / Avg: 41.04 / Max: 41.54

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000SE +/- 0.64, N = 3SE +/- 0.79, N = 4SE +/- 1.86, N = 3SE +/- 0.36, N = 339.1549.97902.7820.96
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano160320480640800Min: 37.88 / Avg: 39.15 / Max: 39.9Min: 47.92 / Avg: 49.97 / Max: 51.79Min: 899.76 / Avg: 902.78 / Max: 906.18Min: 20.29 / Avg: 20.96 / Max: 21.53

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000SE +/- 1.90, N = 12SE +/- 2.27, N = 3SE +/- 2.48, N = 3SE +/- 0.70, N = 3156.00197.00796.0083.37
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano140280420560700Min: 146.96 / Avg: 156.25 / Max: 165.88Min: 193.49 / Avg: 197.4 / Max: 201.35Min: 790.77 / Avg: 795.65 / Max: 798.88Min: 82.6 / Avg: 83.37 / Max: 84.77

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000SE +/- 1.32, N = 3SE +/- 1.65, N = 3SE +/- 4.31, N = 3SE +/- 0.60, N = 388.88113.001146.0047.82
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000Min: 86.29 / Avg: 88.88 / Max: 90.62Min: 110.9 / Avg: 113.14 / Max: 116.36Min: 1137.32 / Avg: 1145.68 / Max: 1151.7Min: 46.83 / Avg: 47.82 / Max: 48.89

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano50100150200250SE +/- 0.34, N = 3SE +/- 0.36, N = 3SE +/- 0.22, N = 3SE +/- 0.04, N = 327.3435.11224.1915.76
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano4080120160200Min: 26.85 / Avg: 27.34 / Max: 27.98Min: 34.41 / Avg: 35.11 / Max: 35.61Min: 223.75 / Avg: 224.19 / Max: 224.48Min: 15.71 / Avg: 15.76 / Max: 15.83

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano80160240320400SE +/- 0.15, N = 3SE +/- 0.14, N = 3SE +/- 1.59, N = 3SE +/- 0.03, N = 314.5018.29372.737.76
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano70140210280350Min: 14.29 / Avg: 14.5 / Max: 14.8Min: 18.02 / Avg: 18.29 / Max: 18.46Min: 370.1 / Avg: 372.73 / Max: 375.59Min: 7.71 / Avg: 7.76 / Max: 7.8

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano140280420560700SE +/- 0.86, N = 3SE +/- 1.22, N = 3SE +/- 1.23, N = 3SE +/- 0.02, N = 386.08111.00636.0046.51
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano110220330440550Min: 84.39 / Avg: 86.08 / Max: 87.21Min: 108.57 / Avg: 110.71 / Max: 112.8Min: 633.64 / Avg: 635.99 / Max: 637.77Min: 46.48 / Avg: 46.51 / Max: 46.55

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano30060090012001500SE +/- 0.08, N = 3SE +/- 0.04, N = 3SE +/- 0.25, N = 3SE +/- 0.06, N = 347.1559.691215.0825.08
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet50 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000Min: 47.01 / Avg: 47.15 / Max: 47.28Min: 59.62 / Avg: 59.69 / Max: 59.74Min: 1214.64 / Avg: 1215.08 / Max: 1215.5Min: 24.98 / Avg: 25.08 / Max: 25.19

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000SE +/- 2.17, N = 8SE +/- 4.50, N = 3SE +/- 0.21, N = 3SE +/- 0.19, N = 3179.00233.001006.0098.93
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano2004006008001000Min: 171.57 / Avg: 179.28 / Max: 186.27Min: 223.96 / Avg: 232.95 / Max: 237.67Min: 1005.65 / Avg: 1005.91 / Max: 1006.32Min: 98.55 / Avg: 98.93 / Max: 99.16

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano400800120016002000SE +/- 0.07, N = 3SE +/- 0.74, N = 3SE +/- 8.72, N = 3SE +/- 0.18, N = 3104.00130.001693.0055.66
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: GoogleNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano30060090012001500Min: 103.51 / Avg: 103.65 / Max: 103.76Min: 128.85 / Avg: 130.12 / Max: 131.41Min: 1675.82 / Avg: 1693.17 / Max: 1703.42Min: 55.3 / Avg: 55.66 / Max: 55.89

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano60120180240300SE +/- 0.10, N = 3SE +/- 0.07, N = 3SE +/- 0.26, N = 3SE +/- 0.01, N = 332.6741.91259.8217.38
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano50100150200250Min: 32.48 / Avg: 32.67 / Max: 32.81Min: 41.81 / Avg: 41.91 / Max: 42.04Min: 259.31 / Avg: 259.82 / Max: 260.15Min: 17.37 / Avg: 17.38 / Max: 17.4

OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier110220330440550SE +/- 0.00, N = 3SE +/- 0.03, N = 3SE +/- 0.81, N = 317.3622.07493.22
OpenBenchmarking.orgImages Per Second, More Is BetterNVIDIA TensorRT InferenceNeural Network: ResNet152 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier90180270360450Min: 17.35 / Avg: 17.36 / Max: 17.37Min: 22.03 / Avg: 22.07 / Max: 22.12Min: 491.63 / Avg: 493.22 / Max: 494.31

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.20.1Backend: BLASJetson AGX XavierJetson Nano1122334455SE +/- 0.62, N = 7SE +/- 0.03, N = 347.6215.371. (CXX) g++ options: -lpthread -lz
OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.20.1Backend: BLASJetson AGX XavierJetson Nano1020304050Min: 46.47 / Avg: 47.62 / Max: 51.3Min: 15.31 / Avg: 15.37 / Max: 15.41. (CXX) g++ options: -lpthread -lz

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.20.1Backend: CUDA + cuDNNJetson AGX XavierJetson Nano2004006008001000SE +/- 6.14, N = 3SE +/- 0.26, N = 39531401. (CXX) g++ options: -lpthread -lz
OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.20.1Backend: CUDA + cuDNNJetson AGX XavierJetson Nano2004006008001000Min: 940.76 / Avg: 952.89 / Max: 960.65Min: 139.47 / Avg: 139.79 / Max: 140.311. (CXX) g++ options: -lpthread -lz

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.20.1Backend: CUDA + cuDNN FP16Jetson AGX Xavier5001000150020002500SE +/- 7.60, N = 32515.011. (CXX) g++ options: -lpthread -lz

TTSIOD 3D Renderer

A portable GPL 3D software renderer that supports OpenMP and Intel Threading Building Blocks with many different rendering modes. This version does not use OpenGL but is entirely CPU/software based. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterTTSIOD 3D Renderer 2.3bPhong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4306090120150SE +/- 0.04, N = 3SE +/- 0.46, N = 4SE +/- 0.15, N = 3SE +/- 1.63, N = 12SE +/- 0.11, N = 3SE +/- 0.16, N = 3SE +/- 0.27, N = 9SE +/- 0.97, N = 945.0928.8549.26133.0040.9417.6621.2241.961. (CXX) g++ options: -O3 -fomit-frame-pointer -ffast-math -mtune=native -flto -lSDL -fopenmp -fwhole-program -lstdc++
OpenBenchmarking.orgFPS Per Core, More Is BetterTTSIOD 3D Renderer 2.3bPerformance Per Core - Phong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU44812162011.277.2112.3216.6310.244.425.315.251. Jetson TX1 Max-P: Detected core count of 42. Jetson TX2 Max-Q: Detected core count of 43. Jetson TX2 Max-P: Detected core count of 44. Jetson AGX Xavier: Detected core count of 85. Jetson Nano: Detected core count of 46. Raspberry Pi 3 Model B+: Detected core count of 47. ASUS TinkerBoard: Detected core count of 48. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgFPS Per Thread, More Is BetterTTSIOD 3D Renderer 2.3bPerformance Per Thread - Phong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU44812162011.274.818.2116.6310.244.425.315.251. Jetson TX1 Max-P: Detected thread count of 42. Jetson TX2 Max-Q: Detected thread count of 63. Jetson TX2 Max-P: Detected thread count of 64. Jetson AGX Xavier: Detected thread count of 85. Jetson Nano: Detected thread count of 46. Raspberry Pi 3 Model B+: Detected thread count of 47. ASUS TinkerBoard: Detected thread count of 48. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgFPS Per GHz, More Is BetterTTSIOD 3D Renderer 2.3bPerformance Per Clock - Phong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4132639526526.0622.7224.1558.5928.6312.6111.7927.971. Jetson TX1 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.73 2. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 3. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 4. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 5. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.436. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 7. ASUS TinkerBoard: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.80 8. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgFPS, More Is BetterTTSIOD 3D Renderer 2.3bPhong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU420406080100Min: 45.04 / Avg: 45.09 / Max: 45.16Min: 27.49 / Avg: 28.85 / Max: 29.39Min: 48.96 / Avg: 49.26 / Max: 49.42Min: 130.64 / Avg: 133.37 / Max: 150.98Min: 40.77 / Avg: 40.94 / Max: 41.15Min: 17.5 / Avg: 17.66 / Max: 17.98Min: 20.85 / Avg: 21.22 / Max: 23.35Min: 39.77 / Avg: 41.96 / Max: 49.131. (CXX) g++ options: -O3 -fomit-frame-pointer -ffast-math -mtune=native -flto -lSDL -fopenmp -fwhole-program -lstdc++

7-Zip Compression

This is a test of 7-Zip using p7zip with its integrated benchmark feature or upstream 7-Zip for the Windows x64 build. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMIPS, More Is Better7-Zip Compression 16.02Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU44K8K12K16K20KSE +/- 13.43, N = 3SE +/- 13.05, N = 3SE +/- 20.85, N = 3SE +/- 274.18, N = 12SE +/- 18.00, N = 3SE +/- 23.74, N = 11SE +/- 34.93, N = 3SE +/- 89.16, N = 124508329455931921240492013283641201. (CXX) g++ options: -pipe -lpthread
OpenBenchmarking.orgMIPS Per Core, More Is Better7-Zip Compression 16.02Performance Per Core - Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU450010001500200025001127.00823.501398.252401.501012.25503.25709.00515.001. Jetson TX1 Max-P: Detected core count of 42. Jetson TX2 Max-Q: Detected core count of 43. Jetson TX2 Max-P: Detected core count of 44. Jetson AGX Xavier: Detected core count of 85. Jetson Nano: Detected core count of 46. Raspberry Pi 3 Model B+: Detected core count of 47. ASUS TinkerBoard: Detected core count of 48. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgMIPS Per Thread, More Is Better7-Zip Compression 16.02Performance Per Thread - Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU450010001500200025001127.00549.00932.172401.501012.25503.25709.00515.001. Jetson TX1 Max-P: Detected thread count of 42. Jetson TX2 Max-Q: Detected thread count of 63. Jetson TX2 Max-P: Detected thread count of 64. Jetson AGX Xavier: Detected thread count of 85. Jetson Nano: Detected thread count of 46. Raspberry Pi 3 Model B+: Detected thread count of 47. ASUS TinkerBoard: Detected thread count of 48. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgMIPS Per GHz, More Is Better7-Zip Compression 16.02Performance Per Clock - Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU42K4K6K8K10K2605.782593.702741.678463.442831.471437.861575.562746.671. Jetson TX1 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.73 2. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 3. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 4. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 5. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.436. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 7. ASUS TinkerBoard: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.80 8. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgMIPS, More Is Better7-Zip Compression 16.02Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU43K6K9K12K15KMin: 4483 / Avg: 4508 / Max: 4529Min: 3269 / Avg: 3294 / Max: 3313Min: 5571 / Avg: 5593.33 / Max: 5635Min: 16806 / Avg: 19211.83 / Max: 19780Min: 4025 / Avg: 4048.67 / Max: 4084Min: 1778 / Avg: 2012.64 / Max: 2056Min: 2766 / Avg: 2835.67 / Max: 2875Min: 3798 / Avg: 4120.25 / Max: 49341. (CXX) g++ options: -pipe -lpthread

C-Ray

This is a test of C-Ray, a simple raytracer designed to test the floating-point CPU performance. This test is multi-threaded (16 threads per core), will shoot 8 rays per pixel for anti-aliasing, and will generate a 1600 x 1200 image. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterC-Ray 1.1Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4400800120016002000SE +/- 10.23, N = 3SE +/- 1.44, N = 3SE +/- 49.09, N = 9SE +/- 7.17, N = 9SE +/- 0.35, N = 3SE +/- 2.46, N = 3SE +/- 22.09, N = 3SE +/- 29.65, N = 9753869585355921203017188271. (CC) gcc options: -lm -lpthread -O3
OpenBenchmarking.orgSeconds x Core, Fewer Is BetterC-Ray 1.1Performance Per Core - Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU42K4K6K8K10K301234762340284036848120687266161. Jetson TX1 Max-P: Detected core count of 42. Jetson TX2 Max-Q: Detected core count of 43. Jetson TX2 Max-P: Detected core count of 44. Jetson AGX Xavier: Detected core count of 85. Jetson Nano: Detected core count of 46. Raspberry Pi 3 Model B+: Detected core count of 47. ASUS TinkerBoard: Detected core count of 48. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgSeconds x Thread, Fewer Is BetterC-Ray 1.1Performance Per Thread - Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU42K4K6K8K10K301252143510284036848120687266161. Jetson TX1 Max-P: Detected thread count of 42. Jetson TX2 Max-Q: Detected thread count of 63. Jetson TX2 Max-P: Detected thread count of 64. Jetson AGX Xavier: Detected thread count of 85. Jetson Nano: Detected thread count of 46. Raspberry Pi 3 Model B+: Detected thread count of 47. ASUS TinkerBoard: Detected thread count of 48. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgSeconds x GHz, Fewer Is BetterC-Ray 1.1Performance Per Clock - Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU470014002100280035001302.691103.631193.40805.851317.032842.003092.401240.501. Jetson TX1 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.73 2. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 3. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 4. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 5. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.436. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 7. ASUS TinkerBoard: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.80 8. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgSeconds, Fewer Is BetterC-Ray 1.1Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4400800120016002000Min: 741.18 / Avg: 752.56 / Max: 772.97Min: 865.79 / Avg: 868.66 / Max: 870.17Min: 531.98 / Avg: 585.26 / Max: 977.76Min: 300.33 / Avg: 354.78 / Max: 364.69Min: 920.71 / Avg: 921.21 / Max: 921.88Min: 2025.91 / Avg: 2029.72 / Max: 2034.33Min: 1673.94 / Avg: 1718.09 / Max: 1741.49Min: 747.78 / Avg: 827.04 / Max: 1020.681. (CC) gcc options: -lm -lpthread -O3

Rust Prime Benchmark

Based on petehunt/rust-benchmark, this is a prime number benchmark that is multi-threaded and written in Rustlang. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterRust Prime BenchmarkPrime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4400800120016002000SE +/- 0.77, N = 3SE +/- 0.09, N = 3SE +/- 0.04, N = 3SE +/- 0.00, N = 3SE +/- 0.22, N = 3SE +/- 1.55, N = 3SE +/- 187.90, N = 6SE +/- 0.37, N = 3128.45170.25104.9632.37150.191097.691821.05574.11-ldl -lrt -lpthread -lgcc_s -lc -lm -lutil1. (CC) gcc options: -pie -nodefaultlibs
OpenBenchmarking.orgSeconds x Core, Fewer Is BetterRust Prime BenchmarkPerformance Per Core - Prime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU416003200480064008000513.80681.00419.84258.96600.764390.767284.204592.881. Jetson TX1 Max-P: Detected core count of 42. Jetson TX2 Max-Q: Detected core count of 43. Jetson TX2 Max-P: Detected core count of 44. Jetson AGX Xavier: Detected core count of 85. Jetson Nano: Detected core count of 46. Raspberry Pi 3 Model B+: Detected core count of 47. ASUS TinkerBoard: Detected core count of 48. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgSeconds x Thread, Fewer Is BetterRust Prime BenchmarkPerformance Per Thread - Prime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU416003200480064008000513.801021.50629.76258.96600.764390.767284.204592.881. Jetson TX1 Max-P: Detected thread count of 42. Jetson TX2 Max-Q: Detected thread count of 63. Jetson TX2 Max-P: Detected thread count of 64. Jetson AGX Xavier: Detected thread count of 85. Jetson Nano: Detected thread count of 46. Raspberry Pi 3 Model B+: Detected thread count of 47. ASUS TinkerBoard: Detected thread count of 48. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgSeconds x GHz, Fewer Is BetterRust Prime BenchmarkPerformance Per Clock - Prime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU47001400210028003500222.22216.22214.1273.48214.771536.773277.89861.171. Jetson TX1 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.73 2. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 3. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 4. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 5. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.436. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 7. ASUS TinkerBoard: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.80 8. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgSeconds, Fewer Is BetterRust Prime BenchmarkPrime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU430060090012001500Min: 127 / Avg: 128.45 / Max: 129.6Min: 170.09 / Avg: 170.25 / Max: 170.41Min: 104.9 / Avg: 104.96 / Max: 105.04Min: 32.36 / Avg: 32.37 / Max: 32.37Min: 149.76 / Avg: 150.19 / Max: 150.43Min: 1095.85 / Avg: 1097.69 / Max: 1100.76Min: 1407.01 / Avg: 1821.05 / Max: 2575.57Min: 573.68 / Avg: 574.11 / Max: 574.841. (CC) gcc options: -pie -nodefaultlibs

Zstd Compression

This test measures the time needed to compress a sample file (an Ubuntu file-system image) using Zstd compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterZstd Compression 1.3.4Compressing ubuntu-16.04.3-server-i386.img, Compression Level 19Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoard110220330440550SE +/- 0.42, N = 3SE +/- 1.02, N = 3SE +/- 0.29, N = 3SE +/- 0.91, N = 3SE +/- 0.23, N = 3SE +/- 1.03, N = 3SE +/- 2.16, N = 3145.80253.80144.9780.06129.87342.23496.621. (CC) gcc options: -O3 -pthread -lz -llzma
OpenBenchmarking.orgSeconds, Fewer Is BetterZstd Compression 1.3.4Compressing ubuntu-16.04.3-server-i386.img, Compression Level 19Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoard90180270360450Min: 144.97 / Avg: 145.8 / Max: 146.33Min: 252.57 / Avg: 253.8 / Max: 255.83Min: 144.4 / Avg: 144.97 / Max: 145.39Min: 78.26 / Avg: 80.06 / Max: 81.18Min: 129.55 / Avg: 129.87 / Max: 130.3Min: 340.32 / Avg: 342.23 / Max: 343.87Min: 493.98 / Avg: 496.62 / Max: 500.91. (CC) gcc options: -O3 -pthread -lz -llzma

FLAC Audio Encoding

This test times how long it takes to encode a sample WAV file to FLAC format five times. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterFLAC Audio Encoding 1.3.2WAV To FLACJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU470140210280350SE +/- 0.74, N = 5SE +/- 0.18, N = 5SE +/- 0.15, N = 5SE +/- 0.61, N = 5SE +/- 0.83, N = 5SE +/- 0.98, N = 5SE +/- 2.51, N = 5SE +/- 0.31, N = 579.20104.2865.0754.47104.77339.53279.0597.031. (CXX) g++ options: -O2 -fvisibility=hidden -logg -lm
OpenBenchmarking.orgSeconds, Fewer Is BetterFLAC Audio Encoding 1.3.2WAV To FLACJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU460120180240300Min: 76.88 / Avg: 79.2 / Max: 80.64Min: 103.77 / Avg: 104.28 / Max: 104.76Min: 64.8 / Avg: 65.07 / Max: 65.64Min: 53.06 / Avg: 54.47 / Max: 56.73Min: 103.14 / Avg: 104.77 / Max: 107.75Min: 337.11 / Avg: 339.53 / Max: 342.57Min: 271.5 / Avg: 279.05 / Max: 286.25Min: 96.22 / Avg: 97.03 / Max: 98.121. (CXX) g++ options: -O2 -fvisibility=hidden -logg -lm

OpenCV Benchmark

Stress benchmark tests to measure time consumed by the OpenCV libraries installed Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenCV Benchmark 3.3.0Jetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU4110220330440550SE +/- 5.74, N = 3SE +/- 0.27, N = 3SE +/- 1.57, N = 3SE +/- 4.66, N = 9SE +/- 5.31, N = 3493.00296.00128.00271.042.74520.701. (CXX) g++ options: -std=c++11 -rdynamic
OpenBenchmarking.orgSeconds x Core, Fewer Is BetterOpenCV Benchmark 3.3.0Performance Per CoreJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU490018002700360045001972.001184.001024.001084.1610.964165.601. Jetson TX2 Max-Q: Detected core count of 42. Jetson TX2 Max-P: Detected core count of 43. Jetson AGX Xavier: Detected core count of 84. Jetson Nano: Detected core count of 45. Raspberry Pi 3 Model B+: Detected core count of 46. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgSeconds x Thread, Fewer Is BetterOpenCV Benchmark 3.3.0Performance Per ThreadJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU490018002700360045002958.001776.001024.001084.1610.964165.601. Jetson TX2 Max-Q: Detected thread count of 62. Jetson TX2 Max-P: Detected thread count of 63. Jetson AGX Xavier: Detected thread count of 84. Jetson Nano: Detected thread count of 45. Raspberry Pi 3 Model B+: Detected thread count of 46. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgSeconds x GHz, Fewer Is BetterOpenCV Benchmark 3.3.0Performance Per ClockJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU42004006008001000626.110603.840290.560387.5873.836781.0501. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 2. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 3. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 4. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.435. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 6. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgSeconds, Fewer Is BetterOpenCV Benchmark 3.3.0Jetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU490180270360450Min: 486.66 / Avg: 492.74 / Max: 504.22Min: 295.74 / Avg: 296.1 / Max: 296.62Min: 125.26 / Avg: 127.83 / Max: 130.69Min: 261.63 / Avg: 271.04 / Max: 304.63Min: 514.99 / Avg: 520.7 / Max: 531.31. (CXX) g++ options: -std=c++11 -rdynamic

PyBench

This test profile reports the total time of the different average timed test results from PyBench. PyBench reports average test times for different functions such as BuiltinFunctionCalls and NestedForLoops, with this total result providing a rough estimate as to Python's average performance on a given system. This test profile runs PyBench each time for 20 rounds. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyBench 2018-02-16Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU44K8K12K16K20KSE +/- 18.55, N = 3SE +/- 42.52, N = 3SE +/- 33.86, N = 3SE +/- 4.67, N = 3SE +/- 37.23, N = 3SE +/- 43.80, N = 3SE +/- 854.75, N = 9SE +/- 30.99, N = 36339873554083007708420913115025009
OpenBenchmarking.orgMilliseconds x Core, Fewer Is BetterPyBench 2018-02-16Performance Per Core - Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU420K40K60K80K100K25356349402163224056283368365246008400721. Jetson TX1 Max-P: Detected core count of 42. Jetson TX2 Max-Q: Detected core count of 43. Jetson TX2 Max-P: Detected core count of 44. Jetson AGX Xavier: Detected core count of 85. Jetson Nano: Detected core count of 46. Raspberry Pi 3 Model B+: Detected core count of 47. ASUS TinkerBoard: Detected core count of 48. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgMilliseconds x Thread, Fewer Is BetterPyBench 2018-02-16Performance Per Thread - Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU420K40K60K80K100K25356524103244824056283368365246008400721. Jetson TX1 Max-P: Detected thread count of 42. Jetson TX2 Max-Q: Detected thread count of 63. Jetson TX2 Max-P: Detected thread count of 64. Jetson AGX Xavier: Detected thread count of 85. Jetson Nano: Detected thread count of 46. Raspberry Pi 3 Model B+: Detected thread count of 47. ASUS TinkerBoard: Detected thread count of 48. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgMilliseconds x GHz, Fewer Is BetterPyBench 2018-02-16Performance Per Clock - Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU46K12K18K24K30K10966.4711093.4511032.326825.8910130.1229278.2020703.607513.501. Jetson TX1 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.73 2. Jetson TX2 Max-Q: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.27 3. Jetson TX2 Max-P: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.04 4. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 5. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.436. Raspberry Pi 3 Model B+: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.40 7. ASUS TinkerBoard: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.80 8. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyBench 2018-02-16Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU44K8K12K16K20KMin: 6303 / Avg: 6339.33 / Max: 6364Min: 8690 / Avg: 8735 / Max: 8820Min: 5366 / Avg: 5408 / Max: 5475Min: 2998 / Avg: 3006.67 / Max: 3014Min: 7031 / Avg: 7084.33 / Max: 7156Min: 20826 / Avg: 20912.67 / Max: 20967Min: 9624 / Avg: 11502.33 / Max: 16297Min: 4968 / Avg: 5009.33 / Max: 5070

Tesseract OCR

Tesseract-OCR is the open-source optical character recognition (OCR) engine for the conversion of text within images to raw text output. This test profile relies upon a system-supplied Tesseract installation. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTesseract OCR 4.0.0-beta.1Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU44080120160200SE +/- 0.89, N = 3SE +/- 1.50, N = 3SE +/- 1.38, N = 371.94132.67180.66
OpenBenchmarking.orgSeconds x Core, Fewer Is BetterTesseract OCR 4.0.0-beta.1Performance Per Core - Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU430060090012001500575.52530.681445.281. Jetson AGX Xavier: Detected core count of 82. Jetson Nano: Detected core count of 43. ODROID-XU4: Detected core count of 8
OpenBenchmarking.orgSeconds x Thread, Fewer Is BetterTesseract OCR 4.0.0-beta.1Performance Per Thread - Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU430060090012001500575.52530.681445.281. Jetson AGX Xavier: Detected thread count of 82. Jetson Nano: Detected thread count of 43. ODROID-XU4: Detected thread count of 8
OpenBenchmarking.orgSeconds x GHz, Fewer Is BetterTesseract OCR 4.0.0-beta.1Performance Per Clock - Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU460120180240300163.30189.72270.991. Jetson AGX Xavier: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 2.27 2. Jetson Nano: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.433. ODROID-XU4: Detected GHz base clock speed (use PTS sensors for real-time frequency/sensor reporting) count of 1.50
OpenBenchmarking.orgSeconds, Fewer Is BetterTesseract OCR 4.0.0-beta.1Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU4306090120150Min: 70.52 / Avg: 71.94 / Max: 73.57Min: 130.29 / Avg: 132.67 / Max: 135.45Min: 178.32 / Avg: 180.66 / Max: 183.09

TTSIOD 3D Renderer

OpenBenchmarking.orgFPS Per Dollar, More Is BetterTTSIOD 3D Renderer 2.3bPerformance / Cost - Phong Rendering With Soft-Shadow MappingJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU40.1530.3060.4590.6120.7650.090.050.080.100.410.500.320.681. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

7-Zip Compression

OpenBenchmarking.orgMIPS Per Dollar, More Is Better7-Zip Compression 16.02Performance / Cost - Compress Speed TestJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU415304560759.035.509.3414.7940.9057.5142.9766.451. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

C-Ray

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterC-Ray 1.1Performance / Cost - Total Time - 4K, 16 Rays Per PixelJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU4110K220K330K440K550K375747.00520531.00350415.00461145.0091179.0071050.00113388.0051274.001. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

Rust Prime Benchmark

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterRust Prime BenchmarkPerformance / Cost - Prime Number Test To 200,000,000Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU430K60K90K120K150K64096.55101979.7562871.0442048.6314868.8138419.15120189.3035594.821. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

Zstd Compression

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterZstd Compression 1.3.4Performance / Cost - Compressing ubuntu-16.04.3-server-i386.img, Compression Level 19Jetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoard30K60K90K120K150K72754.20152026.2086837.03103997.9412857.1311978.0532776.921. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.

FLAC Audio Encoding

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterFLAC Audio Encoding 1.3.2Performance / Cost - WAV To FLACJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU415K30K45K60K75K39520.8062463.7238976.9370756.5310372.2311883.5518417.306015.861. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

PyBench

OpenBenchmarking.orgMilliseconds x Dollar, Fewer Is BetterPyBench 2018-02-16Performance / Cost - Total For Average Test TimesJetson TX1 Max-PJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ASUS TinkerBoardODROID-XU41.1M2.2M3.3M4.4M5.5M3163161.005232265.003239392.003906093.00701316.00731955.00759132.00310558.001. Jetson TX1 Max-P: $499 reported cost.2. Jetson TX2 Max-Q: $599 reported cost.3. Jetson TX2 Max-P: $599 reported cost.4. Jetson AGX Xavier: $1299 reported cost.5. Jetson Nano: $99 reported cost.6. Raspberry Pi 3 Model B+: $35 reported cost.7. ASUS TinkerBoard: $66 reported cost.8. ODROID-XU4: $62 reported cost.

CUDA Mini-Nbody

OpenBenchmarking.org(NBody^2)/s Per Dollar, More Is BetterCUDA Mini-Nbody 2015-11-10Performance / Cost - Test: OriginalJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.0090.0180.0270.0360.0450.010.010.040.041. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

NVIDIA TensorRT Inference

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG16 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.0360.0720.1080.1440.180.040.050.160.141. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG16 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.05180.10360.15540.20720.2590.020.030.231. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG19 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.02930.05860.08790.11720.14650.040.040.130.121. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG19 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.0450.090.1350.180.2250.020.020.201. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG16 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.04280.08560.12840.17120.2140.050.060.191. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG16 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.08330.16660.24990.33320.41650.030.030.371. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG19 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.0360.0720.1080.1440.180.040.050.161. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: VGG19 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.06750.1350.20250.270.33750.020.030.301. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: AlexNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.26780.53560.80341.07121.3390.360.440.921.191. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: AlexNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.1980.3960.5940.7920.990.250.310.880.851. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: AlexNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.45680.91361.37041.82722.2840.620.771.572.031. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: AlexNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.54451.0891.63352.1782.72250.400.502.421.291. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet50 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.09450.1890.28350.3780.47250.120.150.420.411. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet50 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.15530.31060.46590.62120.77650.070.080.690.211. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: GoogleNet - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.1890.3780.5670.7560.9450.260.330.610.841. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: GoogleNet - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.1980.3960.5940.7920.990.150.190.880.481. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet152 - Precision: FP16 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.03830.07660.11490.15320.19150.050.060.170.161. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet152 - Precision: INT8 - Batch Size: 4 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.06530.13060.19590.26120.32650.020.030.290.081. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet50 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.11030.22060.33090.44120.55150.140.190.490.471. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet50 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.21150.4230.63450.8461.05750.080.100.940.251. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: GoogleNet - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.2250.450.6750.91.1250.300.390.771.001. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: GoogleNet - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.29250.5850.87751.171.46250.170.221.300.561. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet152 - Precision: FP16 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson Nano0.0450.090.1350.180.2250.050.070.200.181. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgImages Per Second Per Dollar, More Is BetterNVIDIA TensorRT InferencePerformance / Cost - Neural Network: ResNet152 - Precision: INT8 - Batch Size: 32 - DLA Cores: DisabledJetson TX2 Max-QJetson TX2 Max-PJetson AGX Xavier0.08550.1710.25650.3420.42750.030.040.381. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.

OpenCV Benchmark

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterOpenCV Benchmark 3.3.0Performance / Cost -Jetson TX2 Max-QJetson TX2 Max-PJetson AGX XavierJetson NanoRaspberry Pi 3 Model B+ODROID-XU460K120K180K240K300K295307.00177304.00166272.0026832.9695.9032283.401. Jetson TX2 Max-Q: $599 reported cost.2. Jetson TX2 Max-P: $599 reported cost.3. Jetson AGX Xavier: $1299 reported cost.4. Jetson Nano: $99 reported cost.5. Raspberry Pi 3 Model B+: $35 reported cost.6. ODROID-XU4: $62 reported cost.

GLmark2

OpenBenchmarking.orgScore Per Dollar, More Is BetterGLmark2Performance / Cost - Resolution: 1920 x 1080Jetson AGX XavierJetson Nano2468102.216.531. Jetson AGX Xavier: $1299 reported cost.2. Jetson Nano: $99 reported cost.

LeelaChessZero

OpenBenchmarking.orgNodes Per Second Per Dollar, More Is BetterLeelaChessZero 0.20.1Performance / Cost - Backend: BLASJetson AGX XavierJetson Nano0.0360.0720.1080.1440.180.040.161. Jetson AGX Xavier: $1299 reported cost.2. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgNodes Per Second Per Dollar, More Is BetterLeelaChessZero 0.20.1Performance / Cost - Backend: CUDA + cuDNNJetson AGX XavierJetson Nano0.31730.63460.95191.26921.58650.731.411. Jetson AGX Xavier: $1299 reported cost.2. Jetson Nano: $99 reported cost.

OpenBenchmarking.orgNodes Per Second Per Dollar, More Is BetterLeelaChessZero 0.20.1Performance / Cost - Backend: CUDA + cuDNN FP16Jetson AGX Xavier0.43650.8731.30951.7462.18251.941. $1299 reported cost.

Tesseract OCR

OpenBenchmarking.orgSeconds x Dollar, Fewer Is BetterTesseract OCR 4.0.0-beta.1Performance / Cost - Time To OCR 7 ImagesJetson AGX XavierJetson NanoODROID-XU420K40K60K80K100K93450.0613134.3311200.921. Jetson AGX Xavier: $1299 reported cost.2. Jetson Nano: $99 reported cost.3. ODROID-XU4: $62 reported cost.