NCNN NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent.
To run this test with the Phoronix Test Suite , the basic command is: phoronix-test-suite benchmark ncnn .
Test Created 18 September 2020
Last Updated 29 December 2024
Test Type System
Average Install Time 1 Minute, 17 Seconds
Average Run Time 20 Minutes, 48 Seconds
Test Dependencies CMake + C/C++ Compiler Toolchain + Vulkan
Accolades 70k+ Downloads + Recently Updated Test Profile Public Result Uploads * Reported Installs ** Reported Test Completions ** Test Profile Page Views *** OpenBenchmarking.org Events NCNN Popularity Statistics pts/ncnn 2020.09 2020.11 2021.01 2021.03 2021.05 2021.07 2021.09 2021.11 2022.01 2022.03 2022.05 2022.07 2022.09 2022.11 2023.01 2023.03 2023.05 2023.07 2023.09 2023.11 2024.01 2024.03 2024.05 2024.07 2024.09 2024.11 2025.01 7K 14K 21K 28K 35K
* Uploading of benchmark result data to OpenBenchmarking.org is always optional (opt-in) via the Phoronix Test Suite for users wishing to share their results publicly. ** Data based on those opting to upload their test results to OpenBenchmarking.org and users enabling the opt-in anonymous statistics reporting while running benchmarks from an Internet-connected platform. *** Test profile page view reporting began March 2021. Data updated weekly as of 4 January 2025.
CPU 59.7% Vulkan GPU 40.3% Target Option Popularity OpenBenchmarking.org
yolov4-tiny 5.8% shufflenet-v2 5.9% mobilenet-v3 5.7% vgg16 5.9% efficientnet-b0 5.9% regnety_400m 5.9% googlenet 5.9% FastestDet 5.8% alexnet 5.9% mobilenet 5.9% resnet18 5.9% resnet50 5.9% vision_transformer 5.9% blazeface 5.9% mobilenet-v2 5.9% squeezenet_ssd 5.9% mnasnet 5.9% Model Option Popularity OpenBenchmarking.org
Revision Historypts/ncnn-1.6.0 [View Source ] Sun, 29 Dec 2024 10:47:25 GMT Update against NCNN 20241226.
pts/ncnn-1.5.0 [View Source ] Tue, 01 Aug 2023 11:49:36 GMT Update against latest upstream.
pts/ncnn-1.4.0 [View Source ] Sat, 13 Aug 2022 09:59:41 GMT Update against NCNN 20220729 upstream.
pts/ncnn-1.3.0 [View Source ] Tue, 27 Jul 2021 16:34:42 GMT Update against NCNN 2021-07-20 upstream, fix possible Vulkan build issue by including glslang source tree.
pts/ncnn-1.2.0 [View Source ] Fri, 18 Jun 2021 08:11:33 GMT Update against NCNN 20210525 release.
pts/ncnn-1.1.0 [View Source ] Fri, 18 Dec 2020 08:06:41 GMT Update against new upstream NCNN 20201218.
pts/ncnn-1.0.3 [View Source ] Fri, 25 Sep 2020 06:36:39 GMT Drop int8 tests per https://github.com/phoronix-test-suite/test-profiles/pull/167
pts/ncnn-1.0.2 [View Source ] Thu, 24 Sep 2020 12:52:47 GMT Expose Vulkan GPU support.
pts/ncnn-1.0.1 [View Source ] Fri, 18 Sep 2020 12:28:10 GMT Increase the run count.
pts/ncnn-1.0.0 [View Source ] Fri, 18 Sep 2020 11:58:15 GMT Initial commit of Tencent NCNN.
Performance MetricsAnalyze Test Configuration: pts/ncnn-1.6.x - Target: CPU - Model: alexnet pts/ncnn-1.6.x - Target: CPU - Model: vision_transformer pts/ncnn-1.6.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.6.x - Target: CPU - Model: vgg16 pts/ncnn-1.6.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.6.x - Target: CPU - Model: mnasnet pts/ncnn-1.6.x - Target: CPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3 pts/ncnn-1.6.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.6.x - Target: CPU - Model: regnety_400m pts/ncnn-1.6.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.6.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.6.x - Target: CPU - Model: googlenet pts/ncnn-1.6.x - Target: CPU - Model: blazeface pts/ncnn-1.6.x - Target: CPU - Model: resnet50 pts/ncnn-1.6.x - Target: CPU - Model: mobilenet pts/ncnn-1.6.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.6.x - Target: CPU - Model: FastestDet pts/ncnn-1.6.x - Target: CPU - Model: resnet18 pts/ncnn-1.6.x - Target: Vulkan GPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.6.x - Target: Vulkan GPU - Model: FastestDet pts/ncnn-1.6.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.6.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.6.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.6.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.6.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: vision_transformer pts/ncnn-1.6.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.6.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.6.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.6.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.6.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.5.x - Target: CPU - Model: googlenet pts/ncnn-1.5.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: CPU - Model: alexnet pts/ncnn-1.5.x - Target: CPU - Model: regnety_400m pts/ncnn-1.5.x - Target: CPU - Model: resnet18 pts/ncnn-1.5.x - Target: CPU - Model: mobilenet pts/ncnn-1.5.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: CPU - Model: vgg16 pts/ncnn-1.5.x - Target: CPU - Model: resnet50 pts/ncnn-1.5.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: CPU - Model: blazeface pts/ncnn-1.5.x - Target: CPU - Model: vision_transformer pts/ncnn-1.5.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: CPU - Model: mnasnet pts/ncnn-1.5.x - Target: CPU - Model: FastestDet pts/ncnn-1.5.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.5.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.5.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.5.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.5.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.5.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.5.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.5.x - Target: Vulkan GPU - Model: vision_transformer pts/ncnn-1.5.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.5.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.5.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.5.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.5.x - Target: Vulkan GPU - Model: FastestDet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: CPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: alexnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: vision_transformer pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: resnet50 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: vgg16 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: mnasnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: blazeface pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: googlenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: mobilenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: yolov4-tiny pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: resnet18 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: FastestDet pts/ncnn-1.5.x - Target: Vulkan GPUv2-yolov3v2-yolov3 - Model: mobilenetv2-yolov3 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: alexnet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: resnet50 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: blazeface pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: vgg16 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: mnasnet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: vision_transformer pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: regnety_400m pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: resnet18 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: googlenet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: mobilenet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: yolov4-tiny pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: CPU-v3-v3-v3 - Model: FastestDet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3 - Model: regnety_400m pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: alexnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: vision_transformer pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: mobilenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: resnet18 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: regnety_400m pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: googlenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: blazeface pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: FastestDet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: mnasnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: vgg16 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: resnet50 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3 - Model: yolov4-tiny pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: vgg16 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: regnety_400m pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: yolov4-tiny pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: mobilenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: FastestDet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: resnet50 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: alexnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: vision_transformer pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: resnet18 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: blazeface pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: googlenet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: mnasnet pts/ncnn-1.5.x - Target: Vulkan GPU-v3-v3-v3-v3-v3-v3-v3-v3-v3 - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: yolov4-tiny pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: vgg16 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: resnet18 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: FastestDet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: mnasnet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: shufflenet-v2 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: efficientnet-b0 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: mobilenet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: resnet50 pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: blazeface pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: squeezenet_ssd pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: regnety_400m pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: googlenet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: alexnet pts/ncnn-1.5.x - Target: CPU-v3-v3-v3-v3-v3-v3 - Model: vision_transformer pts/ncnn-1.4.x - Target: CPU - Model: vision_transformer pts/ncnn-1.4.x - Target: CPU - Model: resnet50 pts/ncnn-1.4.x - Target: CPU - Model: vgg16 pts/ncnn-1.4.x - Target: CPU - Model: resnet18 pts/ncnn-1.4.x - Target: CPU - Model: mobilenet pts/ncnn-1.4.x - Target: CPU - Model: alexnet pts/ncnn-1.4.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.4.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.4.x - Target: CPU - Model: regnety_400m pts/ncnn-1.4.x - Target: CPU - Model: googlenet pts/ncnn-1.4.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.4.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.4.x - Target: CPU - Model: blazeface pts/ncnn-1.4.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.4.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.4.x - Target: CPU - Model: mnasnet pts/ncnn-1.4.x - Target: CPU - Model: FastestDet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: vision_transformer pts/ncnn-1.4.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.4.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.4.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.4.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: FastestDet pts/ncnn-1.4.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.4.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.3.x - Target: CPU - Model: resnet50 pts/ncnn-1.3.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.3.x - Target: CPU - Model: mobilenet pts/ncnn-1.3.x - Target: CPU - Model: vgg16 pts/ncnn-1.3.x - Target: CPU - Model: alexnet pts/ncnn-1.3.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.3.x - Target: CPU - Model: resnet18 pts/ncnn-1.3.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.3.x - Target: CPU - Model: regnety_400m pts/ncnn-1.3.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.3.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.3.x - Target: CPU - Model: mnasnet pts/ncnn-1.3.x - Target: CPU - Model: googlenet pts/ncnn-1.3.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.3.x - Target: CPU - Model: blazeface pts/ncnn-1.3.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.3.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.3.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.3.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.3.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.3.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.3.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.3.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.3.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.3.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.2.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.2.x - Target: CPU - Model: resnet18 pts/ncnn-1.2.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.2.x - Target: CPU - Model: vgg16 pts/ncnn-1.2.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.2.x - Target: CPU - Model: resnet50 pts/ncnn-1.2.x - Target: CPU - Model: blazeface pts/ncnn-1.2.x - Target: CPU - Model: googlenet pts/ncnn-1.2.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.2.x - Target: CPU - Model: mobilenet pts/ncnn-1.2.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.2.x - Target: CPU - Model: mnasnet pts/ncnn-1.2.x - Target: CPU - Model: alexnet pts/ncnn-1.2.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.2.x - Target: CPU - Model: regnety_400m pts/ncnn-1.2.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.2.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.2.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.2.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.2.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.2.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.2.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.2.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.2.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.2.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.1.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.1.x - Target: CPU - Model: resnet50 pts/ncnn-1.1.x - Target: CPU - Model: mobilenet pts/ncnn-1.1.x - Target: CPU - Model: vgg16 pts/ncnn-1.1.x - Target: CPU - Model: squeezenet_ssd pts/ncnn-1.1.x - Target: CPU - Model: alexnet pts/ncnn-1.1.x - Target: CPU - Model: googlenet pts/ncnn-1.1.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.1.x - Target: CPU - Model: resnet18 pts/ncnn-1.1.x - Target: CPU - Model: regnety_400m pts/ncnn-1.1.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.1.x - Target: CPU - Model: mnasnet pts/ncnn-1.1.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.1.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.1.x - Target: CPU - Model: blazeface pts/ncnn-1.1.x - Target: Vulkan GPU - Model: regnety_400m pts/ncnn-1.1.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.1.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.1.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.1.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.1.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.1.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.1.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.1.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.1.x - Target: Vulkan GPU - Model: squeezenet_ssd pts/ncnn-1.0.x - Target: CPU - Model: squeezenet pts/ncnn-1.0.x - Target: CPU - Model: alexnet pts/ncnn-1.0.x - Target: CPU - Model: mnasnet pts/ncnn-1.0.x - Target: CPU - Model: blazeface pts/ncnn-1.0.x - Target: CPU - Model: yolov4-tiny pts/ncnn-1.0.x - Target: CPU - Model: resnet18 pts/ncnn-1.0.x - Target: CPU - Model: resnet50 pts/ncnn-1.0.x - Target: CPU - Model: mobilenet pts/ncnn-1.0.x - Target: CPU - Model: googlenet pts/ncnn-1.0.x - Target: CPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.0.x - Target: CPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.0.x - Target: CPU - Model: efficientnet-b0 pts/ncnn-1.0.x - Target: CPU - Model: vgg16 pts/ncnn-1.0.x - Target: CPU - Model: shufflenet-v2 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: alexnet pts/ncnn-1.0.x - Target: Vulkan GPU - Model: yolov4-tiny pts/ncnn-1.0.x - Target: Vulkan GPU - Model: efficientnet-b0 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: resnet50 pts/ncnn-1.0.x - Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: vgg16 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: mobilenet pts/ncnn-1.0.x - Target: Vulkan GPU - Model: squeezenet pts/ncnn-1.0.x - Target: Vulkan GPU - Model: resnet18 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: shufflenet-v2 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: mnasnet pts/ncnn-1.0.x - Target: Vulkan GPU - Model: googlenet pts/ncnn-1.0.x - Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 pts/ncnn-1.0.x - Target: Vulkan GPU - Model: blazeface pts/ncnn-1.0.x - Target: CPU - Model: googlenet_int8 pts/ncnn-1.0.x - Target: CPU - Model: vgg16_int8 pts/ncnn-1.0.x - Target: CPU - Model: squeezenet_int8 pts/ncnn-1.0.x - Target: CPU - Model: resnet18_int8 pts/ncnn-1.0.x - Target: CPU - Model: resnet50_int8 pts/ncnn-1.0.x - Target: CPU - Model: mobilenet_v3 pts/ncnn-1.0.x - Target: CPU - Model: mobilenetv2_yolov3 NCNN 20241226 Target: CPU - Model: alexnet OpenBenchmarking.org metrics for this test profile configuration based on 49 public results since 29 December 2024 with the latest data as of 30 December 2024 .
Below is an overview of the generalized performance for components where there is sufficient statistically significant data based upon user-uploaded results. It is important to keep in mind particularly in the Linux/open-source space there can be vastly different OS configurations, with this overview intended to offer just general guidance as to the performance expectations.
Component
Percentile Rank
# Compatible Public Results
ms (Average)
Detailed Performance Overview OpenBenchmarking.org Distribution Of Public Results - Target: CPU - Model: alexnet 23 Results Range From 3 To 19 ms 3 5 7 9 11 13 15 17 19 21 23 25 27 2 4 6 8 10
Based on OpenBenchmarking.org data, the selected test / test configuration (NCNN 20241226 - Target: CPU - Model: alexnet ) has an average run-time of 10 minutes . By default this test profile is set to run at least 3 times but may increase if the standard deviation exceeds pre-defined defaults or other calculations deem additional runs necessary for greater statistical accuracy of the result.
OpenBenchmarking.org Minutes Time Required To Complete Benchmark Target: CPU - Model: alexnet Run-Time 5 10 15 20 25 Min: 2 / Avg: 9.25 / Max: 21
Based on public OpenBenchmarking.org results, the selected test / test configuration has an average standard deviation of 0.4% .
OpenBenchmarking.org Percent, Fewer Is Better Average Deviation Between Runs Target: CPU - Model: alexnet Deviation 2 4 6 8 10 Min: 0 / Avg: 0.36 / Max: 4
Notable Instruction Set Usage Notable instruction set extensions supported by this test, based on an automatic analysis by the Phoronix Test Suite / OpenBenchmarking.org analytics engine.
Instruction Set
Support
Instructions Detected
SSE2 (SSE2)
Used by default on supported hardware.
MOVD PSHUFD PSHUFLW MOVDQU MOVDQA SUBSD MOVAPD MINSD MAXSD ADDSD CVTSI2SD DIVSD PUNPCKLQDQ CVTSS2SD MULSD MULPD PSRLDQ CVTSD2SS CVTTPS2DQ CVTDQ2PS PUNPCKHQDQ PMULUDQ PADDQ SHUFPD COMISD PSHUFHW
Used by default on supported hardware. Found on Intel processors since Sandy Bridge (2011). Found on AMD processors since Bulldozer (2011).
VZEROUPPER VBROADCASTSS VPERM2F128 VINSERTF128 VEXTRACTF128 VPERMILPS VMASKMOVPS VBROADCASTF128 VBROADCASTSD
Used by default on supported hardware. Found on Intel processors since Haswell (2013). Found on AMD processors since Excavator (2016).
VPBROADCASTD VINSERTI128 VPERMD VEXTRACTI128 VPERMQ VPERM2I128 VPBROADCASTW VPBROADCASTB VPBROADCASTQ VGATHERDPS VPGATHERQQ VPSRLVQ
Advanced Vector Extensions 512 (AVX512)
Used by default on supported hardware.
(ZMM REGISTER USE)
Used by default on supported hardware. Found on Intel processors since Haswell (2013). Found on AMD processors since Bulldozer (2011).
VFMADD132PS VFMADD132SS VFNMADD231PS VFMADD231PS VFMADD213PS VFNMADD132PS VFNMADD132SS VFNMADD213SS VFMSUB132SS VFNMADD231SS VFMADD231SS VFMSUB132PS VFMSUB231SS VFMADD213SS VFMADD132PD VFMADD132SD VFNMSUB132SS VFNMSUB231SS
AVX Vector Neural Network Instructions (AVX-VNNI)
Requires passing a supported compiler/build flag (verified with targets: tigerlake, cascadelake).
VPDPWSSD
The test / benchmark does honor compiler flag changes.
Last automated analysis: 18 September 2023
This test profile binary relies on the shared libraries libgomp.so.1, libm.so.6, libmvec.so.1, libc.so.6 .
Tested CPU Architectures This benchmark has been successfully tested on the below mentioned architectures. The CPU architectures listed is where successful OpenBenchmarking.org result uploads occurred, namely for helping to determine if a given test is compatible with various alternative CPU architectures.
CPU Architecture
Kernel Identifier
Verified On
Intel / AMD x86 64-bit
x86_64
(Many Processors)
ARMv8 64-bit
aarch64
ARMv8 Neoverse-N1 128-Core
Recent Test Results
4 Systems - 48 Benchmark Results
Intel Core Ultra 9 285K - ASUS ROG MAXIMUS Z890 HERO - Intel Device ae7f
Ubuntu 24.10 - 6.11.0-13-generic - GNOME Shell 47.0
4 Systems - 48 Benchmark Results
AMD Ryzen 9 9950X 16-Core - ASRock X870E Taichi - AMD Device 14d8
Ubuntu 24.04 - 6.12.3-061203-generic - GNOME Shell 46.0
3 Systems - 48 Benchmark Results
AMD Ryzen 7 7840HS - Framework Laptop 16 - AMD Device 14e8
Ubuntu 24.04 - 6.8.0-49-generic - GNOME Shell 46.0
4 Systems - 48 Benchmark Results
Intel Core Ultra 7 256V - ASUS Zenbook S 14 UX5406SA_UX5406SA UX5406SA v1.0 - Intel Device a87f
Ubuntu 24.10 - 6.12.0-rc6-phx-drm-next - GNOME Shell 47.0
4 Systems - 48 Benchmark Results
AMD Ryzen Threadripper 7980X 64-Cores - System76 Thelio Major - AMD Device 14a4
Ubuntu 24.04 - 6.12.3-061203-generic - GNOME Shell 46.0
2 Systems - 30 Benchmark Results
2 x AMD EPYC 9654 96-Core - AMD Titanite_4G - AMD Device 14a4
Ubuntu 24.10 - 6.11.0-13-generic - GNOME Shell 47.0
1 System - 18 Benchmark Results
AMD Ryzen 9 5900X 12-Core - ASRock X570 Steel Legend - AMD Starship
Ubuntu 24.10 - 6.11.0-13-generic - X Server
1 System - 322 Benchmark Results
AMD Eng Sample 100-000000897-03 - Supermicro Super Server H13SSL-N v2.00 - AMD Device 14a4
Ubuntu 24.04 - 6.8.0-50-generic - GNOME Shell 46.0
1 System - 322 Benchmark Results
6 Systems - 199 Benchmark Results
Intel Core i5-10300H - CML Stonic_CMS - Intel Comet Lake PCH
Ubuntu 24.04 - 6.8.0-49-generic - GNOME Shell 46.0
5 Systems - 211 Benchmark Results
Intel Core Ultra 9 285K - MSI MEG Z890 UNIFY-X - Intel Device ae7f
Ubuntu 24.10 - 6.12.1-061201-generic - GNOME Shell 47.0
1 System - 39 Benchmark Results
Intel Core Ultra 9 285K - MSI MEG Z890 UNIFY-X - Intel Device ae7f
Ubuntu 24.10 - 6.12.1-061201-generic - GNOME Shell 47.0
1 System - 44 Benchmark Results
AMD Ryzen Threadripper PRO 7965WX 24-Cores - ASUS Pro WS WRX90E-SAGE SE - AMD Genoa
Debian - 6.11.10-amd64 - KDE Plasma 6.2.3
Featured Processor Comparison
Featured Processor Comparison
Most Popular Test Results
4 Systems - 48 Benchmark Results
Intel Core Ultra 7 256V - ASUS Zenbook S 14 UX5406SA_UX5406SA UX5406SA v1.0 - Intel Device a87f
Ubuntu 24.10 - 6.12.0-rc6-phx-drm-next - GNOME Shell 47.0
4 Systems - 48 Benchmark Results
AMD Ryzen Threadripper 7980X 64-Cores - System76 Thelio Major - AMD Device 14a4
Ubuntu 24.04 - 6.12.3-061203-generic - GNOME Shell 46.0
2 Systems - 30 Benchmark Results
2 x AMD EPYC 9654 96-Core - AMD Titanite_4G - AMD Device 14a4
Ubuntu 24.10 - 6.11.0-13-generic - GNOME Shell 47.0
4 Systems - 48 Benchmark Results
Intel Core Ultra 9 285K - ASUS ROG MAXIMUS Z890 HERO - Intel Device ae7f
Ubuntu 24.10 - 6.11.0-13-generic - GNOME Shell 47.0
3 Systems - 48 Benchmark Results
AMD Ryzen 7 7840HS - Framework Laptop 16 - AMD Device 14e8
Ubuntu 24.04 - 6.8.0-49-generic - GNOME Shell 46.0
4 Systems - 48 Benchmark Results
AMD Ryzen 9 9950X 16-Core - ASRock X870E Taichi - AMD Device 14d8
Ubuntu 24.04 - 6.12.3-061203-generic - GNOME Shell 46.0
2 Systems - 30 Benchmark Results
2 x AMD EPYC 9654 96-Core - AMD Titanite_4G - AMD Device 14a4
Ubuntu 24.10 - 6.11.0-13-generic - GNOME Shell 47.0