somervillePyTorchFULL AMD Ryzen 9 9950X 16-Core testing with a ASUS PRIME B650M-A II (3201 BIOS) and Gigabyte NVIDIA GeForce RTX 2070 SUPER 8GB on Ubuntu 24.04 via the Phoronix Test Suite.
Compare your own system(s) to this result file with the
Phoronix Test Suite by running the command:
phoronix-test-suite benchmark 2501271-NE-SOMERVILL26 run1 Processor: AMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads), Motherboard: ASUS PRIME B650M-A II (3201 BIOS), Chipset: AMD Device 14d8, Memory: 4 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G, Disk: 2000GB Samsung SSD 980 PRO 2TB, Graphics: Gigabyte NVIDIA GeForce RTX 2070 SUPER 8GB, Audio: NVIDIA TU104 HD Audio, Monitor: VS2447 100Hz, Network: 2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbE
OS: Ubuntu 24.04, Kernel: 6.8.0-51-generic (x86_64), Display Server: X Server 1.21.1.11, Display Driver: NVIDIA, OpenCL: OpenCL 3.0 CUDA 12.4.131, Compiler: GCC 13.3.0 + CUDA 12.4, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023Python Notes: Python 3.12.3Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-152 run1 7 14 21 28 35 SE +/- 0.20, N = 3 29.44 MIN: 27.2 / MAX: 30.14
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 run1 12 24 36 48 60 SE +/- 0.17, N = 3 53.13 MIN: 46.44 / MAX: 53.96
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 run1 12 24 36 48 60 SE +/- 0.27, N = 3 52.01 MIN: 48.14 / MAX: 53.17
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 run1 12 24 36 48 60 SE +/- 0.19, N = 3 52.46 MIN: 45.47 / MAX: 53.68
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 run1 5 10 15 20 25 SE +/- 0.11, N = 3 21.07 MIN: 19.52 / MAX: 21.47
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-50 run1 12 24 36 48 60 SE +/- 0.62, N = 4 52.01 MIN: 47.86 / MAX: 53.15
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: ResNet-50 run1 11 22 33 44 55 SE +/- 0.39, N = 3 50.91 MIN: 48.68 / MAX: 51.95
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-152 run1 5 10 15 20 25 SE +/- 0.23, N = 4 21.20 MIN: 18.7 / MAX: 21.86
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-152 run1 5 10 15 20 25 SE +/- 0.13, N = 3 21.28 MIN: 18.47 / MAX: 21.73
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: ResNet-152 run1 5 10 15 20 25 SE +/- 0.23, N = 3 21.21 MIN: 19.83 / MAX: 21.7
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l run1 4 8 12 16 20 SE +/- 0.06, N = 3 16.23 MIN: 15.83 / MAX: 16.5
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l run1 3 6 9 12 15 SE +/- 0.06, N = 3 12.64 MIN: 11.04 / MAX: 13.16
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l run1 3 6 9 12 15 SE +/- 0.02, N = 3 12.69 MIN: 11.27 / MAX: 13.14
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l run1 3 6 9 12 15 SE +/- 0.08, N = 3 12.42 MIN: 10.74 / MAX: 13.24
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l run1 3 6 9 12 15 SE +/- 0.05, N = 3 12.65 MIN: 11.39 / MAX: 13.17
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l run1 3 6 9 12 15 SE +/- 0.08, N = 3 12.66 MIN: 11.08 / MAX: 13.25
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50 run1 70 140 210 280 350 SE +/- 0.37, N = 3 325.51 MIN: 314.65 / MAX: 329.04
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152 run1 30 60 90 120 150 SE +/- 0.25, N = 3 131.72 MIN: 100.93 / MAX: 132.78
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50 run1 50 100 150 200 250 SE +/- 0.19, N = 3 208.83 MIN: 193.54 / MAX: 210.94
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50 run1 50 100 150 200 250 SE +/- 0.18, N = 3 208.57 MIN: 193.37 / MAX: 210.52
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50 run1 50 100 150 200 250 SE +/- 0.22, N = 3 208.44 MIN: 151.51 / MAX: 210.37
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152 run1 20 40 60 80 100 SE +/- 0.14, N = 3 85.97 MIN: 83.42 / MAX: 87.55
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50 run1 50 100 150 200 250 SE +/- 0.19, N = 3 207.52 MIN: 192.76 / MAX: 209.28
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152 run1 20 40 60 80 100 SE +/- 0.06, N = 3 85.82 MIN: 83.62 / MAX: 87.16
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50 run1 50 100 150 200 250 SE +/- 0.17, N = 3 207.79 MIN: 192.71 / MAX: 209.46
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152 run1 20 40 60 80 100 SE +/- 0.07, N = 3 85.85 MIN: 83.46 / MAX: 87.19
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152 run1 20 40 60 80 100 SE +/- 0.07, N = 3 85.68 MIN: 83.44 / MAX: 87.17
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152 run1 20 40 60 80 100 SE +/- 0.08, N = 3 85.67 MIN: 82.97 / MAX: 87.07
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_l run1 20 40 60 80 100 SE +/- 0.04, N = 3 104.20 MIN: 89.05 / MAX: 105.94
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_l run1 13 26 39 52 65 SE +/- 0.05, N = 3 58.38 MIN: 50.27 / MAX: 59.3
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_l run1 13 26 39 52 65 SE +/- 0.06, N = 3 58.30 MIN: 52.73 / MAX: 59.25
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_l run1 13 26 39 52 65 SE +/- 0.07, N = 3 58.26 MIN: 51.34 / MAX: 59.25
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_l run1 13 26 39 52 65 SE +/- 0.05, N = 3 58.27 MIN: 54.21 / MAX: 59.2
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_l run1 13 26 39 52 65 SE +/- 0.04, N = 3 58.24 MIN: 51.17 / MAX: 59.03
run1 Processor: AMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads), Motherboard: ASUS PRIME B650M-A II (3201 BIOS), Chipset: AMD Device 14d8, Memory: 4 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G, Disk: 2000GB Samsung SSD 980 PRO 2TB, Graphics: Gigabyte NVIDIA GeForce RTX 2070 SUPER 8GB, Audio: NVIDIA TU104 HD Audio, Monitor: VS2447 100Hz, Network: 2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbE
OS: Ubuntu 24.04, Kernel: 6.8.0-51-generic (x86_64), Display Server: X Server 1.21.1.11, Display Driver: NVIDIA, OpenCL: OpenCL 3.0 CUDA 12.4.131, Compiler: GCC 13.3.0 + CUDA 12.4, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023Python Notes: Python 3.12.3Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 28 January 2025 02:40 by user parallel.