m7g.8xlarge

amazon testing on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2407019-NE-M7G8XLARG55
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
m7g.8xlarge
July 01 2024
  11 Hours, 30 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


m7g.8xlargeOpenBenchmarking.orgPhoronix Test SuiteARMv8 Neoverse-V1 (32 Cores)Amazon EC2 m7g.8xlarge (1.0 BIOS)Amazon Device 0200128GB537GB Amazon Elastic Block StoreAmazon ElasticUbuntu 22.046.5.0-1017-aws (aarch64)1.3.255GCC 11.4.0ext4amazonProcessorMotherboardChipsetMemoryDiskNetworkOSKernelVulkanCompilerFile-SystemSystem LayerM7g.8xlarge BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 BHB + srbds: Not affected + tsx_async_abort: Not affected

m7g.8xlargewhisper-cpp: ggml-medium.en - 2016 State of the Uniondeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamwhisper-cpp: ggml-base.en - 2016 State of the Uniondeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamopencv: Stitchingdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamwhisper-cpp: ggml-small.en - 2016 State of the Unionopencv: DNN - Deep Neural Networkmlpack: scikit_qdaopencv: Image Processingonednn: Recurrent Neural Network Training - CPUopencv: Coremlpack: scikit_linearridgeregressiononednn: Recurrent Neural Network Inference - CPUdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUonnx: yolov4 - CPU - Parallelonnx: yolov4 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Standardopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Standardopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUonnx: T5 Encoder - CPU - Parallelonnx: T5 Encoder - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardopencv: Features 2Ddeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamonednn: IP Shapes 3D - CPUdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streammlpack: scikit_icaopencv: Object Detectionllama-cpp: Meta-Llama-3-8B-Instruct-Q8_0.ggufopencv: Videomlpack: scikit_svmonednn: Deconvolution Batch shapes_1d - CPUonednn: IP Shapes 1D - CPUonednn: Convolution Batch Shapes Auto - CPUonednn: Deconvolution Batch shapes_3d - CPUm7g.8xlarge439.611701105.383914.320181.6095080.729612.383628448016.1855984.1460179.730142345920.481052927798.29969641.703943.274083.76583.67473042.172.582.4132412.77342151.543.6859.568816.7775159.7556.26020173.4745.76448377.3121.17492.9116.21376.8021.20170.4846.87879.8761.13658704.1041.420244.61260216.3836.91744144.421113.1670.67217.8184.5915254.229018.4386111.4188.97560112.9638.85209201.6539.62154.8651.632.83110352.80325.39314.9270.31113.70185.8443.014.35358229.62988.160411.342955.087018.152024.07332.1414.70543.7822.98347.8148.17166.0226.78298.318.84903.291.07450929.2082.053886.782.093808.132.59272385.4573.92809254.5005.46672182.87812.783978.216312.642979.08145474315.863162.975791.6242173.93851500.496110.39384.9453201.718139.4253404.73621498.919310.322596.832710.32564.5261996.810210.3280239.372666.421413.530173.841617.732956.3498164.792196.53549.1766108.7917107.4825148.1704107.5853148.09109.1805108.747133.722726122.472276016.8764.40036.5044910.583613.7726OpenBenchmarking.org

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-medium.en - Input: 2016 State of the Unionm7g.8xlarge100200300400500SE +/- 5.49, N = 9439.611. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm7g.8xlarge2004006008001000SE +/- 1.76, N = 31105.38

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm7g.8xlarge48121620SE +/- 0.03, N = 314.32

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-base.en - Input: 2016 State of the Unionm7g.8xlarge20406080100SE +/- 0.69, N = 1581.611. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.05, N = 380.73

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.01, N = 312.38

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Stitchingm7g.8xlarge60K120K180K240K300KSE +/- 284.51, N = 32844801. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge48121620SE +/- 0.01, N = 316.19

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge2004006008001000SE +/- 0.55, N = 3984.15

Whisper.cpp

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-small.en - Input: 2016 State of the Unionm7g.8xlarge4080120160200SE +/- 2.02, N = 4179.731. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

Test: Graph API

m7g.8xlarge: The test quit with a non-zero exit status. E: AbsExact error: G-API output and reference output matrixes are not bitexact equal.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural Networkm7g.8xlarge5K10K15K20K25KSE +/- 427.59, N = 15234591. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdam7g.8xlarge510152025SE +/- 0.09, N = 320.48

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Image Processingm7g.8xlarge20K40K60K80K100KSE +/- 282.17, N = 31052921. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUm7g.8xlarge2K4K6K8K10KSE +/- 80.29, N = 37798.29MIN: 7620.61. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Corem7g.8xlarge20K40K60K80K100KSE +/- 663.91, N = 3969641. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionm7g.8xlarge0.38250.7651.14751.531.9125SE +/- 0.00, N = 31.70

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUm7g.8xlarge8001600240032004000SE +/- 12.89, N = 33943.27MIN: 3910.41. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm7g.8xlarge9001800270036004500SE +/- 7.23, N = 34083.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm7g.8xlarge0.82681.65362.48043.30724.134SE +/- 0.0071, N = 33.6747

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge7001400210028003500SE +/- 1.31, N = 33042.17MIN: 2748.48 / MAX: 4882.421. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge0.58051.1611.74152.3222.9025SE +/- 0.00, N = 32.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge0.5431.0861.6292.1722.715SE +/- 0.0089, N = 32.4132

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge90180270360450SE +/- 1.54, N = 3412.77

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge5001000150020002500SE +/- 2.66, N = 32151.54MIN: 1728.64 / MAX: 4274.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge0.8281.6562.4843.3124.14SE +/- 0.01, N = 33.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm7g.8xlarge1326395265SE +/- 0.05, N = 359.57

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.01, N = 316.78

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge4080120160200SE +/- 1.31, N = 3159.761. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.05082, N = 36.260201. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.24, N = 3173.471. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.2972.5943.8915.1886.485SE +/- 0.00787, N = 35.764481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.20, N = 3377.31MIN: 235.41 / MAX: 510.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge510152025SE +/- 0.01, N = 321.171. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge110220330440550SE +/- 0.48, N = 3492.91MIN: 489.58 / MAX: 526.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge48121620SE +/- 0.01, N = 316.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.30, N = 3376.80MIN: 207.53 / MAX: 510.751. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge510152025SE +/- 0.02, N = 321.201. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.08, N = 3170.48MIN: 154.07 / MAX: 334.21. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge1122334455SE +/- 0.02, N = 346.871. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge2004006008001000SE +/- 4.21, N = 3879.881. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge0.25570.51140.76711.02281.2785SE +/- 0.00545, N = 31.136581. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge150300450600750SE +/- 0.42, N = 3704.101. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge0.31960.63920.95881.27841.598SE +/- 0.00084, N = 31.420241. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge1.03782.07563.11344.15125.189SE +/- 0.01049, N = 34.612601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge50100150200250SE +/- 0.50, N = 3216.381. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge246810SE +/- 0.00806, N = 36.917441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge306090120150SE +/- 0.17, N = 3144.421. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.04, N = 3113.16MIN: 110.94 / MAX: 150.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge1632486480SE +/- 0.02, N = 370.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 1.73, N = 3217.821. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge1.03312.06623.09934.13245.1655SE +/- 0.03681, N = 34.591521. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.06, N = 354.231. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge510152025SE +/- 0.02, N = 318.441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.64, N = 3111.421. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.05195, N = 38.975601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge306090120150SE +/- 0.01, N = 3112.961. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.00106, N = 38.852091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.38, N = 3201.65MIN: 199.37 / MAX: 225.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge918273645SE +/- 0.07, N = 339.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge306090120150SE +/- 0.32, N = 3154.86MIN: 152.55 / MAX: 178.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge1224364860SE +/- 0.11, N = 351.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge0.6371.2741.9112.5483.185SE +/- 0.01609, N = 32.831101. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge80160240320400SE +/- 2.01, N = 3352.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.32, N = 325.39MIN: 22.51 / MAX: 39.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge70140210280350SE +/- 3.87, N = 3314.921. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge1632486480SE +/- 0.09, N = 370.31MIN: 53.97 / MAX: 122.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.14, N = 3113.701. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.75, N = 3185.84MIN: 183.08 / MAX: 211.711. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge1020304050SE +/- 0.18, N = 343.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge0.97961.95922.93883.91844.898SE +/- 0.01533, N = 34.353581. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 0.81, N = 3229.631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.24, N = 388.161. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.03, N = 311.341. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.02, N = 355.091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge48121620SE +/- 0.01, N = 318.151. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge612182430SE +/- 0.12, N = 324.07MIN: 22.31 / MAX: 225.531. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge70140210280350SE +/- 1.64, N = 3332.141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge48121620SE +/- 0.02, N = 314.70MIN: 11.59 / MAX: 168.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge120240360480600SE +/- 0.86, N = 3543.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.07, N = 322.98MIN: 16.5 / MAX: 41.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 1.11, N = 3347.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge1122334455SE +/- 0.04, N = 348.17MIN: 46.88 / MAX: 54.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.13, N = 3166.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.04, N = 326.78MIN: 23.25 / MAX: 51.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge60120180240300SE +/- 0.45, N = 3298.311. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge246810SE +/- 0.00, N = 38.84MIN: 7.91 / MAX: 16.481. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge2004006008001000SE +/- 0.28, N = 3903.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.24180.48360.72540.96721.209SE +/- 0.00052, N = 31.074501. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge2004006008001000SE +/- 0.48, N = 3929.211. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge0.46130.92261.38391.84522.3065SE +/- 0.00, N = 32.05MIN: 1.28 / MAX: 23.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 2.45, N = 33886.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge0.47030.94061.41091.88122.3515SE +/- 0.00, N = 32.09MIN: 1 / MAX: 26.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 1.81, N = 33808.131. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge0.58341.16681.75022.33362.917SE +/- 0.00506, N = 32.592721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge80160240320400SE +/- 0.75, N = 3385.461. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.88381.76762.65143.53524.419SE +/- 0.00884, N = 33.928091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge60120180240300SE +/- 0.57, N = 3254.501. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.232.463.694.926.15SE +/- 0.01039, N = 35.466721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.35, N = 3182.881. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.01, N = 312.781. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.04, N = 378.221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge3691215SE +/- 0.01, N = 312.641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge20406080100SE +/- 0.09, N = 379.081. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Features 2Dm7g.8xlarge12K24K36K48K60KSE +/- 267.56, N = 3547431. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.08, N = 315.86

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1428425670SE +/- 0.30, N = 362.98

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.12, N = 391.62

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge4080120160200SE +/- 0.23, N = 3173.94

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm7g.8xlarge30060090012001500SE +/- 0.95, N = 31500.50

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm7g.8xlarge3691215SE +/- 0.08, N = 310.39

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1.11272.22543.33814.45085.5635SE +/- 0.0052, N = 34.9453

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge4080120160200SE +/- 0.22, N = 3201.72

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge918273645SE +/- 0.03, N = 339.43

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge90180270360450SE +/- 0.33, N = 3404.74

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm7g.8xlarge30060090012001500SE +/- 0.08, N = 31498.92

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.32

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.03, N = 396.83

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.33

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUm7g.8xlarge1.01842.03683.05524.07365.092SE +/- 0.12704, N = 154.52619MIN: 4.131. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.01, N = 396.81

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.33

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge50100150200250SE +/- 0.03, N = 3239.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge1530456075SE +/- 0.02, N = 366.42

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 313.53

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm7g.8xlarge1632486480SE +/- 0.02, N = 373.84

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.01, N = 317.73

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1326395265SE +/- 0.02, N = 356.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm7g.8xlarge4080120160200SE +/- 0.02, N = 3164.79

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.04, N = 396.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.0025, N = 39.1766

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.03, N = 3108.79

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.02, N = 3107.48

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm7g.8xlarge306090120150SE +/- 0.05, N = 3148.17

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.04, N = 3107.59

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm7g.8xlarge306090120150SE +/- 0.02, N = 3148.09

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.0009, N = 39.1805

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.01, N = 3108.75

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icam7g.8xlarge816243240SE +/- 0.05, N = 333.72

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Object Detectionm7g.8xlarge6K12K18K24K30KSE +/- 75.10, N = 3272611. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Llama.cpp

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b3067Model: Meta-Llama-3-8B-Instruct-Q8_0.ggufm7g.8xlarge510152025SE +/- 0.14, N = 322.471. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -mcpu=native -lopenblas

OpenCV

This is a benchmark of the OpenCV (Computer Vision) library's built-in performance tests. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Videom7g.8xlarge5K10K15K20K25KSE +/- 92.56, N = 3227601. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmm7g.8xlarge48121620SE +/- 0.02, N = 316.87

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUm7g.8xlarge1428425670SE +/- 0.08, N = 364.40MIN: 64.091. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUm7g.8xlarge246810SE +/- 0.00772, N = 36.50449MIN: 6.421. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUm7g.8xlarge3691215SE +/- 0.02, N = 310.58MIN: 10.451. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUm7g.8xlarge48121620SE +/- 0.01, N = 313.77MIN: 13.691. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

146 Results Shown

Whisper.cpp
Neural Magic DeepSparse:
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    ms/batch
    items/sec
Whisper.cpp
Neural Magic DeepSparse:
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    ms/batch
    items/sec
OpenCV
Neural Magic DeepSparse:
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
Whisper.cpp
OpenCV
Mlpack Benchmark
OpenCV
oneDNN
OpenCV
Mlpack Benchmark
oneDNN
Neural Magic DeepSparse:
  Llama2 Chat 7b Quantized - Asynchronous Multi-Stream:
    ms/batch
    items/sec
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
Neural Magic DeepSparse:
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
OpenVINO:
  Face Detection FP16 - CPU:
    ms
    FPS
Neural Magic DeepSparse:
  Llama2 Chat 7b Quantized - Synchronous Single-Stream:
    ms/batch
    items/sec
ONNX Runtime:
  Faster R-CNN R-50-FPN-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  Faster R-CNN R-50-FPN-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Person Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  fcn-resnet101-11 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  fcn-resnet101-11 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Noise Suppression Poconet-Like FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  yolov4 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  yolov4 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
ONNX Runtime:
  T5 Encoder - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  T5 Encoder - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Person Re-Identification Retail FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  CaffeNet 12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
ONNX Runtime:
  CaffeNet 12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
OpenCV
Neural Magic DeepSparse:
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    ms/batch
    items/sec
oneDNN
Neural Magic DeepSparse:
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    ms/batch
    items/sec
Mlpack Benchmark
OpenCV
Llama.cpp
OpenCV
Mlpack Benchmark
oneDNN:
  Deconvolution Batch shapes_1d - CPU
  IP Shapes 1D - CPU
  Convolution Batch Shapes Auto - CPU
  Deconvolution Batch shapes_3d - CPU