c6i.4xlarge

c6i.4xlarge

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2406288-NE-C6I4XLARG16
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Disable Color Branding
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
c6i.4xlarge
June 21
  14 Hours
Intel Xeon Platinum 8375C - EFI VGA - Amazon EC2
June 24
  4 Minutes
test
June 26
  1 Minute
ttessss
June 26
  1 Minute
ewg adg
June 26
  1 Minute
dfdasf
June 26
  1 Minute
c6i.4xlarge123
June 27
  1 Minute
ddd
June 27
  1 Minute
n
June 28
  3 Minutes
sdfsafas
June 28
 
Invert Behavior (Only Show Selected Data)
  1 Hour, 25 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


c6i.4xlargeOpenBenchmarking.orgPhoronix Test SuiteIntel Xeon Platinum 8375C (8 Cores / 16 Threads)Amazon EC2 c6i.4xlarge (1.0 BIOS)Intel 440FX 82441FX PMC1 x 32 GB DDR4-3200MT/s215GB Amazon Elastic Block StoreEFI VGAAmazon ElasticUbuntu 22.046.5.0-1020-aws (x86_64)1.3.255GCC 11.4.0ext4800x600amazonProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelVulkanCompilerFile-SystemScreen ResolutionSystem LayerC6i.4xlarge BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - CPU Microcode: 0xd0003d1- c6i.4xlarge: Python 3.11.9- Intel Xeon Platinum 8375C - EFI VGA - Amazon EC2: Python 3.11.9- test: Python 3.11.9- ttessss: Python 3.12.4- ewg adg: Python 3.11.9- dfdasf: Python 3.11.9- c6i.4xlarge123: Python 3.9.19- ddd: Python 3.9.19- gather_data_sampling: Unknown: Dependent on hypervisor status + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT Host state unknown + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; RSB filling; PBRSB-eIBRS: SW sequence; BHI: Syscall hardening KVM: SW loop + srbds: Not affected + tsx_async_abort: Not affected

c6i.4xlargescikit-learn: 20 Newsgroups / Logistic Regressionllama-cpp: Meta-Llama-3-8B-Instruct-Q8_0.ggufonednn: Recurrent Neural Network Inference - CPUonednn: Recurrent Neural Network Training - CPUonednn: Deconvolution Batch shapes_3d - CPUonednn: IP Shapes 3D - CPUonednn: IP Shapes 1D - CPUonednn: Convolution Batch Shapes Auto - CPUscikit-learn: Sparse Rand Projections / 100 Iterationsscikit-learn: Kernel PCA Solvers / Time vs. N Componentsscikit-learn: Kernel PCA Solvers / Time vs. N Samplesscikit-learn: Hist Gradient Boosting Categorical Onlyscikit-learn: Plot Polynomial Kernel Approximationscikit-learn: Hist Gradient Boosting Higgs Bosonscikit-learn: Plot Singular Value Decompositionscikit-learn: Hist Gradient Boosting Threadingscikit-learn: Isotonic / Perturbed Logarithmscikit-learn: Hist Gradient Boosting Adultscikit-learn: Covertype Dataset Benchmarkscikit-learn: Sample Without Replacementscikit-learn: Hist Gradient Boostingscikit-learn: Plot Incremental PCAscikit-learn: Isotonic / Logisticscikit-learn: TSNE MNIST Datasetscikit-learn: LocalOutlierFactorscikit-learn: Feature Expansionsscikit-learn: Plot OMP vs. LARSscikit-learn: Plot Hierarchicalscikit-learn: Text Vectorizersscikit-learn: Plot Fast KMeansscikit-learn: Isolation Forestscikit-learn: Plot Lasso Pathscikit-learn: SGDOneClassSVMscikit-learn: SGD Regressionscikit-learn: Plot Neighborsscikit-learn: MNIST Datasetscikit-learn: Plot Wardscikit-learn: Sparsifyscikit-learn: Lassoscikit-learn: Treescikit-learn: SAGAscikit-learn: GLMmlpack: scikit_linearridgeregressionmlpack: scikit_svmmlpack: scikit_qdamlpack: scikit_icaonednn: Deconvolution Batch shapes_1d - CPUscikit-learn: Glmnetc6i.4xlargeIntel Xeon Platinum 8375C - EFI VGA - Amazon EC2testttessssewg adgdfdasfc6i.4xlarge123dddnsdfsafas50.2479.641557.472967.624.390622.949252.011023.97166852.98890.358258.39918.073225.03854.54462.00595.3142252.41090.721483.167153.210104.03177.4141885.951318.77775.25222.47848.873259.18970.936199.025349.905262.867297.026125.254204.78685.56074.633106.328405.47350.3801191.571268.2682.2313.5830.2046.047.7388949.3009.69OpenBenchmarking.org

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic Regressionc6i.4xlargeIntel Xeon Platinum 8375C - EFI VGA - Amazon EC21122334455SE +/- 0.06, N = 3SE +/- 0.21, N = 350.2549.301. (F9X) gfortran options: -O0

Benchmark: 20 Newsgroups / Logistic Regression

test: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'numpy._core'

ewg adg: The test quit with a non-zero exit status. E: ImportError: /lib/x86_64-linux-gnu/liblapack.so.3: undefined symbol: gotoblas

dfdasf: The test quit with a non-zero exit status. E: ImportError: /lib/x86_64-linux-gnu/liblapack.so.3: undefined symbol: gotoblas

ttessss: The test quit with a non-zero exit status. E: ImportError: /lib/x86_64-linux-gnu/liblapack.so.3: undefined symbol: gotoblas

c6i.4xlarge123: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'numpy._core'

ddd: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'numpy._core'

Llama.cpp

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b3067Model: Meta-Llama-3-8B-Instruct-Q8_0.ggufnc6i.4xlarge3691215SE +/- 0.04, N = 3SE +/- 0.03, N = 39.699.641. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUc6i.4xlarge30060090012001500SE +/- 0.86, N = 31557.47MIN: 1539.331. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUc6i.4xlarge6001200180024003000SE +/- 4.69, N = 32967.62MIN: 2944.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUc6i.4xlarge0.98791.97582.96373.95164.9395SE +/- 0.00353, N = 34.39062MIN: 4.361. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUc6i.4xlarge0.66361.32721.99082.65443.318SE +/- 0.00799, N = 32.94925MIN: 2.781. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUc6i.4xlarge0.45250.9051.35751.812.2625SE +/- 0.01758, N = 32.01102MIN: 1.921. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUc6i.4xlarge0.89361.78722.68083.57444.468SE +/- 0.01442, N = 33.97166MIN: 3.741. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 Iterationsc6i.4xlarge2004006008001000SE +/- 5.20, N = 3852.991. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Componentsc6i.4xlarge20406080100SE +/- 0.63, N = 390.361. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Samplesc6i.4xlarge60120180240300SE +/- 0.31, N = 3258.401. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical Onlyc6i.4xlarge48121620SE +/- 0.06, N = 318.071. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel Approximationc6i.4xlarge50100150200250SE +/- 2.40, N = 3225.041. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs Bosonc6i.4xlarge1224364860SE +/- 0.14, N = 354.541. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value Decompositionc6i.4xlarge1428425670SE +/- 0.06, N = 362.011. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Threadingc6i.4xlarge20406080100SE +/- 0.74, N = 395.311. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Perturbed Logarithmc6i.4xlarge5001000150020002500SE +/- 7.47, N = 32252.411. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Adultc6i.4xlarge20406080100SE +/- 0.08, N = 390.721. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset Benchmarkc6i.4xlarge100200300400500SE +/- 1.75, N = 3483.171. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without Replacementc6i.4xlarge306090120150SE +/- 0.75, N = 3153.211. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boostingc6i.4xlarge20406080100SE +/- 0.21, N = 3104.031. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAc6i.4xlarge20406080100SE +/- 0.32, N = 377.411. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isotonic / Logisticc6i.4xlarge400800120016002000SE +/- 8.47, N = 31885.951. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST Datasetc6i.4xlarge70140210280350SE +/- 0.31, N = 3318.781. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorc6i.4xlarge20406080100SE +/- 0.14, N = 375.251. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature Expansionsc6i.4xlarge50100150200250SE +/- 0.08, N = 3222.481. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSc6i.4xlarge1122334455SE +/- 0.19, N = 348.871. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Hierarchicalc6i.4xlarge60120180240300SE +/- 1.56, N = 3259.191. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text Vectorizersc6i.4xlarge1632486480SE +/- 0.04, N = 370.941. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Fast KMeansc6i.4xlarge4080120160200SE +/- 0.99, N = 3199.031. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Isolation Forestc6i.4xlarge80160240320400SE +/- 0.82, N = 3349.911. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso Pathc6i.4xlarge60120180240300SE +/- 0.86, N = 3262.871. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGDOneClassSVMc6i.4xlarge60120180240300SE +/- 0.38, N = 3297.031. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD Regressionc6i.4xlarge306090120150SE +/- 0.45, N = 3125.251. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Neighborsc6i.4xlarge4080120160200SE +/- 0.88, N = 3204.791. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST Datasetc6i.4xlarge20406080100SE +/- 0.07, N = 385.561. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Wardc6i.4xlarge20406080100SE +/- 0.02, N = 374.631. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparsifyc6i.4xlarge20406080100SE +/- 0.07, N = 3106.331. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Lassoc6i.4xlarge90180270360450SE +/- 3.54, N = 3405.471. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Treec6i.4xlarge1122334455SE +/- 0.20, N = 350.381. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAc6i.4xlarge30060090012001500SE +/- 1.80, N = 31191.571. (F9X) gfortran options: -O0

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMc6i.4xlarge60120180240300SE +/- 0.45, N = 3268.271. (F9X) gfortran options: -O0

Mlpack Benchmark

Mlpack benchmark scripts for machine learning libraries Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionc6i.4xlarge0.50181.00361.50542.00722.509SE +/- 0.01, N = 32.23

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmc6i.4xlarge3691215SE +/- 0.17, N = 313.58

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdac6i.4xlarge714212835SE +/- 0.01, N = 330.20

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icac6i.4xlarge1020304050SE +/- 0.11, N = 346.04

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUc6i.4xlarge246810SE +/- 0.14831, N = 157.73889MIN: 5.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Scikit-Learn

Scikit-learn is a Python module for machine learning built on NumPy, SciPy, and is BSD-licensed. Learn more via the OpenBenchmarking.org test page.

Benchmark: Plot Non-Negative Matrix Factorization

c6i.4xlarge: The test quit with a non-zero exit status. E: KeyError:

Benchmark: RCV1 Logreg Convergencet

c6i.4xlarge: The test quit with a non-zero exit status. E: IndexError: list index out of range

Benchmark: Isotonic / Pathological

c6i.4xlarge: The test quit with a non-zero exit status.

Benchmark: Plot Parallel Pairwise

c6i.4xlarge: The test quit with a non-zero exit status. E: numpy.core._exceptions._ArrayMemoryError: Unable to allocate 74.5 GiB for an array with shape (100000, 100000) and data type float64

Benchmark: Glmnet

c6i.4xlarge: The test quit with a non-zero exit status. E: ModuleNotFoundError: No module named 'glmnet'