lfld

AMD Ryzen Threadripper 3970X 32-Core testing with a ASUS ROG ZENITH II EXTREME (1802 BIOS) and AMD Radeon RX 5700 8GB on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2404067-NE-LFLD4610042
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

Timed Code Compilation 2 Tests
C/C++ Compiler Tests 3 Tests
CPU Massive 5 Tests
Creator Workloads 4 Tests
Encoding 2 Tests
HPC - High Performance Computing 3 Tests
Machine Learning 3 Tests
Multi-Core 6 Tests
Programmer / Developer System Benchmarks 2 Tests
Python Tests 4 Tests
Server CPU Tests 3 Tests
Video Encoding 2 Tests
Common Workstation Benchmarks 3 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
April 05
  2 Hours, 53 Minutes
b
April 05
  2 Hours, 53 Minutes
c
April 05
  2 Hours, 53 Minutes
Invert Hiding All Results Option
  2 Hours, 53 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


lfldOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper 3970X 32-Core @ 3.70GHz (32 Cores / 64 Threads)ASUS ROG ZENITH II EXTREME (1802 BIOS)AMD Starship/Matisse4 x 16GB DDR4-3600MT/s Corsair CMT64GX4M4Z3600C16Samsung SSD 980 PRO 500GBAMD Radeon RX 5700 8GB (1750/875MHz)AMD Navi 10 HDMI AudioASUS VP28UAquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200Ubuntu 22.046.5.0-25-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.0.1 (LLVM 13.0.1 DRM 3.54)1.2.204GCC 11.4.0ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionLfld BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x830107a- Python 3.10.12- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%102%103%105%106%StockfishPyTorchTimed FFmpeg CompilationTimed Mesa CompilationBRL-CADLlamafilex265TensorFlowFFmpegBlenderRocksDB

lfldtensorflow: CPU - 256 - ResNet-50brl-cad: VGR Performance Metrictensorflow: CPU - 256 - GoogLeNettensorflow: CPU - 64 - ResNet-50blender: Barbershop - CPU-Onlypytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lffmpeg: libx265 - Video On Demandffmpeg: libx265 - Platformffmpeg: libx264 - Uploadffmpeg: libx265 - Uploadtensorflow: CPU - 32 - ResNet-50tensorflow: CPU - 256 - AlexNetffmpeg: libx264 - Platformffmpeg: libx264 - Video On Demandpytorch: CPU - 64 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 16 - ResNet-152rocksdb: Seq Fillpytorch: CPU - 1 - Efficientnet_v2_lllamafile: wizardcoder-python-34b-v1.0.Q6_K - CPUtensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 16 - ResNet-50blender: Pabellon Barcelona - CPU-Onlyblender: Classroom - CPU-Onlyllamafile: mistral-7b-instruct-v0.2.Q8_0 - CPUffmpeg: libx265 - Livestockfish: Chess Benchmarkpytorch: CPU - 1 - ResNet-152tensorflow: CPU - 64 - AlexNetpytorch: CPU - 64 - ResNet-50pytorch: CPU - 32 - ResNet-50tensorflow: CPU - 32 - GoogLeNetpytorch: CPU - 16 - ResNet-50rocksdb: Rand Fill Syncblender: Junkshop - CPU-Onlyrocksdb: Rand Fillrocksdb: Overwriterocksdb: Read Rand Write Randrocksdb: Update Randrocksdb: Read While Writingrocksdb: Rand Readblender: Fishy Cat - CPU-Onlytensorflow: CPU - 32 - AlexNetffmpeg: libx264 - Liveblender: BMW27 - CPU-Onlytensorflow: CPU - 16 - GoogLeNetpytorch: CPU - 1 - ResNet-50tensorflow: CPU - 16 - AlexNetbuild-ffmpeg: Time To Compilex265: Bosphorus 4Kllamafile: llava-v1.5-7b-q4 - CPUtensorflow: CPU - 1 - ResNet-50build-mesa: Time To Compiletensorflow: CPU - 1 - AlexNetx265: Bosphorus 1080ptensorflow: CPU - 1 - GoogLeNetabc15.2952068251.2414.01440.725.935.925.9428.1428.1712.3113.5613.95131.5246.4146.4311.5311.6611.693911307.823.0552.2113.31135.1115.610.3368.636062638814.1099.7530.0930.4351.1730.34568963.193842363828343157205535854637820412297116253.4177.71192.8842.7147.6136.0459.3931.10424.5515.77.5815.8469.3745.3111.1715.2652204651.114.02443.495.905.925.9628.0528.0512.2713.5614.07131.6946.3746.5311.5411.5611.703911567.753.0651.4313.4135.77116.2310.4267.945942297814.0399.5429.7329.4451.3730.16563763.63846413799193170105545830634202512272230553.4876.7190.3642.6247.9534.8359.1630.82924.3915.797.615.7999.2845.5711.1815.3251897750.9914.07440.395.905.945.9328.0328.0912.3313.5313.93131.8346.4746.5111.4711.5211.723904647.733.0551.7913.14135.16116.6710.3567.715714218813.98100.2630.1430.1451.8730.565511643822413824243162012545086632621912501637553.8976.07191.0342.5247.3235.3658.0330.94824.4515.77.4615.7469.344511.09OpenBenchmarking.org

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: ResNet-50cba4812162015.3215.2615.29

BRL-CAD

BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgVGR Performance Metric, More Is BetterBRL-CAD 7.38.2VGR Performance Metriccba110K220K330K440K550K5189775220465206821. (CXX) g++ options: -std=c++17 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lnetpbm -lregex_brl -lz_brl -lassimp -ldl -lm -ltk8.6

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: GoogLeNetcba122436486050.9951.1051.24

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50cba4812162014.0714.0214.01

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Barbershop - Compute: CPU-Onlycba100200300400500440.39443.49440.72

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lcba1.33432.66864.00295.33726.67155.905.905.93MIN: 5.85 / MAX: 5.93MIN: 5.82 / MAX: 5.93MIN: 5.89 / MAX: 5.97

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lcba1.33652.6734.00955.3466.68255.945.925.92MIN: 5.9 / MAX: 5.97MIN: 5.88 / MAX: 5.95MIN: 5.88 / MAX: 5.94

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lcba1.3412.6824.0235.3646.7055.935.965.94MIN: 5.82 / MAX: 6MIN: 5.92 / MAX: 6.01MIN: 5.89 / MAX: 6.01

FFmpeg

This is a benchmark of the FFmpeg multimedia framework. The FFmpeg test profile is making use of a modified version of vbench from Columbia University's Architecture and Design Lab (ARCADE) [http://arcade.cs.columbia.edu/vbench/] that is a benchmark for video-as-a-service workloads. The test profile offers the options of a range of vbench scenarios based on freely distributable video content and offers the options of using the x264 or x265 video encoders for transcoding. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx265 - Scenario: Video On Demandcba71421283528.0328.0528.141. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx265 - Scenario: Platformcba71421283528.0928.0528.171. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx264 - Scenario: Uploadcba369121512.3312.2712.311. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx265 - Scenario: Uploadcba369121513.5313.5613.561. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50cba4812162013.9314.0713.95

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: AlexNetcba306090120150131.83131.69131.52

FFmpeg

This is a benchmark of the FFmpeg multimedia framework. The FFmpeg test profile is making use of a modified version of vbench from Columbia University's Architecture and Design Lab (ARCADE) [http://arcade.cs.columbia.edu/vbench/] that is a benchmark for video-as-a-service workloads. The test profile offers the options of a range of vbench scenarios based on freely distributable video content and offers the options of using the x264 or x265 video encoders for transcoding. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx264 - Scenario: Platformcba112233445546.4746.3746.411. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx264 - Scenario: Video On Demandcba112233445546.5146.5346.431. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152cba369121511.4711.5411.53MIN: 11.36 / MAX: 11.54MIN: 11.39 / MAX: 11.67MIN: 11.4 / MAX: 11.63

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152cba369121511.5211.5611.66MIN: 11.43 / MAX: 11.62MIN: 11.37 / MAX: 11.68MIN: 11.44 / MAX: 11.83

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152cba369121511.7211.7011.69MIN: 10.4 / MAX: 11.89MIN: 11.52 / MAX: 11.79MIN: 11.45 / MAX: 11.76

RocksDB

This is a benchmark of Meta/Facebook's RocksDB as an embeddable persistent key-value store for fast storage based on Google's LevelDB. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Sequential Fillcba80K160K240K320K400K3904643911563911301. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lcba2468107.737.757.82MIN: 7.63 / MAX: 7.82MIN: 7.54 / MAX: 7.82MIN: 7.73 / MAX: 7.91

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.7Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPUcba0.68851.3772.06552.7543.44253.053.063.05

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetcba122436486051.7951.4352.21

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50cba369121513.1413.4013.31

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlycba306090120150135.16135.77135.10

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Classroom - Compute: CPU-Onlycba306090120150116.67116.23115.60

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.7Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPUcba369121510.3510.4210.33

FFmpeg

This is a benchmark of the FFmpeg multimedia framework. The FFmpeg test profile is making use of a modified version of vbench from Columbia University's Architecture and Design Lab (ARCADE) [http://arcade.cs.columbia.edu/vbench/] that is a benchmark for video-as-a-service workloads. The test profile offers the options of a range of vbench scenarios based on freely distributable video content and offers the options of using the x264 or x265 video encoders for transcoding. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx265 - Scenario: Livecba153045607567.7167.9468.631. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

Stockfish

This is a test of Stockfish, an advanced open-source C++11 chess benchmark that can scale up to 1024 CPU threads. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterStockfish 16.1Chess Benchmarkcba13M26M39M52M65M5714218859422978606263881. (CXX) g++ options: -lgcov -m64 -lpthread -fno-exceptions -std=c++17 -fno-peel-loops -fno-tracer -pedantic -O3 -funroll-loops -msse -msse3 -mpopcnt -mavx2 -mbmi -msse4.1 -mssse3 -msse2 -flto -flto-partition=one -flto=jobserver

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152cba4812162013.9814.0314.10MIN: 13.81 / MAX: 14.1MIN: 13.81 / MAX: 14.13MIN: 14.02 / MAX: 14.26

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetcba20406080100100.2699.5499.75

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50cba71421283530.1429.7330.09MIN: 29.4 / MAX: 30.57MIN: 29.08 / MAX: 30.16MIN: 28.19 / MAX: 30.53

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50cba71421283530.1429.4430.43MIN: 27.74 / MAX: 30.47MIN: 28.71 / MAX: 29.78MIN: 29.92 / MAX: 30.77

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetcba122436486051.8751.3751.17

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50cba71421283530.5630.1630.34MIN: 30.05 / MAX: 30.85MIN: 29.46 / MAX: 30.57MIN: 28.23 / MAX: 30.9

RocksDB

This is a benchmark of Meta/Facebook's RocksDB as an embeddable persistent key-value store for fast storage based on Google's LevelDB. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Fill Synccba120024003600480060005511563756891. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Junkshop - Compute: CPU-Onlycba142842567064.0063.6063.19

RocksDB

This is a benchmark of Meta/Facebook's RocksDB as an embeddable persistent key-value store for fast storage based on Google's LevelDB. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Fillcba80K160K240K320K400K3822413846413842361. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Overwritecba80K160K240K320K400K3824243799193828341. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Read Random Write Randomcba700K1400K2100K2800K3500K3162012317010531572051. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Update Randomcba120K240K360K480K600K5450865458305358541. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Read While Writingcba1.4M2.8M4.2M5.6M7M6326219634202563782041. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Readcba30M60M90M120M150M1250163751227223051229711621. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlycba122436486053.8953.4853.41

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetcba2040608010076.0776.7077.71

FFmpeg

This is a benchmark of the FFmpeg multimedia framework. The FFmpeg test profile is making use of a modified version of vbench from Columbia University's Architecture and Design Lab (ARCADE) [http://arcade.cs.columbia.edu/vbench/] that is a benchmark for video-as-a-service workloads. The test profile offers the options of a range of vbench scenarios based on freely distributable video content and offers the options of using the x264 or x265 video encoders for transcoding. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterFFmpeg 7.0Encoder: libx264 - Scenario: Livecba4080120160200191.03190.36192.881. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlycba102030405042.5242.6242.71

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetcba112233445547.3247.9547.61

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50cba81624324035.3634.8336.04MIN: 34.11 / MAX: 35.87MIN: 33.83 / MAX: 35.56MIN: 35.37 / MAX: 36.38

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetcba132639526558.0359.1659.39

Timed FFmpeg Compilation

This test times how long it takes to build the FFmpeg multimedia library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed FFmpeg Compilation 7.0Time To Compilecba71421283530.9530.8331.10

x265

This is a simple test of the x265 encoder run on the CPU with 1080p and 4K options for H.265 video encode performance with x265. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterx265 3.6Video Input: Bosphorus 4Kcba61218243024.4524.3924.551. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.7Test: llava-v1.5-7b-q4 - Acceleration: CPUcba4812162015.7015.7915.70

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50cba2468107.467.607.58

Timed Mesa Compilation

This test profile times how long it takes to compile Mesa with Meson/Ninja. For minimizing build dependencies and avoid versioning conflicts, test this is just the core Mesa build without LLVM or the extra Gallium3D/Mesa drivers enabled. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Mesa Compilation 24.0Time To Compilecba4812162015.7515.8015.85

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetcba36912159.349.289.37

x265

This is a simple test of the x265 encoder run on the CPU with 1080p and 4K options for H.265 video encode performance with x265. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betterx265 3.6Video Input: Bosphorus 1080pcba102030405045.0045.5745.311. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetcba369121511.0911.1811.17