5900hx eo q1

Tests for a future article. AMD Ryzen 9 5900HX testing with a ASUS ROG Strix G513QY_G513QY G513QY v1.0 (G513QY.318 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 22.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403290-PTS-5900HXEO83
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

C/C++ Compiler Tests 2 Tests
CPU Massive 6 Tests
Creator Workloads 3 Tests
HPC - High Performance Computing 2 Tests
Machine Learning 2 Tests
Multi-Core 5 Tests
Python Tests 3 Tests
Server CPU Tests 3 Tests
Common Workstation Benchmarks 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 29
  2 Hours, 17 Minutes
b
March 29
  2 Hours, 16 Minutes
Invert Hiding All Results Option
  2 Hours, 17 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


5900hx eo q1OpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads)ASUS ROG Strix G513QY_G513QY G513QY v1.0 (G513QY.318 BIOS)AMD Renoir/Cezanne2 x 8GB DDR4-3200MT/s Micron 4ATF1G64HZ-3G2E2512GB SAMSUNG MZVLQ512HBLU-00B00ASUS AMD Cezanne 512MB (2500/1000MHz)AMD Navi 21/23LQ156M1JW25Realtek RTL8111/8168/8411 + MEDIATEK MT7921 802.11ax PCIUbuntu 22.105.19.0-46-generic (x86_64)GNOME Shell 43.0X Server 1.21.1.4 + Wayland4.6 Mesa 22.2.5 (LLVM 15.0.2 DRM 3.47)1.3.224GCC 12.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen Resolution5900hx Eo Q1 BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0xa50000c - ACPI Profile: balanced - Python 3.10.7- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+3.1%+3.1%+6.2%+6.2%+9.3%+9.3%+12.4%+12.4%12.4%7.7%5.6%2.8%2.6%2.4%2.4%2%Chess BenchmarkCPU - 64 - ResNet-508.2%CPU - 64 - ResNet-152Preset 12 - Bosphorus 1080p6.8%CPU - 32 - ResNet-50CPU - 64 - Efficientnet_v2_l5.4%CPU - 32 - ResNet-1525.3%Preset 8 - Bosphorus 1080p3.3%CPU - 1 - ResNet-50CPU - 16 - ResNet-502.8%CPU - 16 - AlexNetCPU - 1 - AlexNetCPU - 1 - Efficientnet_v2_lCPU - 1 - ResNet-502.1%CPU - 1 - ResNet-1522%Preset 12 - Bosphorus 4K2%CPU - 64 - ResNet-50StockfishPyTorchPyTorchSVT-AV1PyTorchPyTorchPyTorchSVT-AV1TensorFlowPyTorchTensorFlowTensorFlowPyTorchPyTorchPyTorchSVT-AV1TensorFlowab

5900hx eo q1brl-cad: VGR Performance Metrictensorflow: CPU - 1 - AlexNettensorflow: CPU - 16 - AlexNettensorflow: CPU - 32 - AlexNettensorflow: CPU - 64 - AlexNettensorflow: CPU - 1 - GoogLeNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 32 - ResNet-50tensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 64 - ResNet-50pytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lprimesieve: 1e12stockfish: Chess Benchmarksvt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pblender: BMW27 - CPU-Onlyblender: Junkshop - CPU-Onlyblender: Classroom - CPU-Onlyblender: Fishy Cat - CPU-Onlyblender: Barbershop - CPU-Onlyblender: Pabellon Barcelona - CPU-Onlybuild-mesa: Time To Compileab1558604.6141.5457.0969.6813.045.3321.877.8521.787.7221.687.6933.7715.4919.7619.6620.119.219.158.679.336.226.226.2219.271115099743.63526.05564.01265.49812.92886.626285.015329.497152.81208.77395.99186.331474.59481.6244.5551555034.7242.6358.0470.8413.25.4822.17.8721.97.821.837.8433.0615.1819.2220.7718.599.178.699.349.556.346.185.9019.252129428043.65425.99962.73964.38313.02683.871266.973332.898154.22208.69397.59185.761490.95482.1343.986OpenBenchmarking.org

BRL-CAD

BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgVGR Performance Metric, More Is BetterBRL-CAD 7.38.2VGR Performance Metricba30K60K90K120K150K1555031558601. (CXX) g++ options: -std=c++17 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lnetpbm -lregex_brl -lz_brl -lassimp -ldl -lm -ltk8.6

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetab1.0622.1243.1864.2485.314.614.72

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetab102030405041.5442.63

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetab132639526557.0958.04

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetab163248648069.6870.84

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetab369121513.0413.20

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab1.2332.4663.6994.9326.1655.335.48

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetab51015202521.8722.10

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab2468107.857.87

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetab51015202521.7821.90

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab2468107.727.80

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetab51015202521.6821.83

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab2468107.697.84

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ba81624324033.0633.77MIN: 24.65 / MAX: 35.35MIN: 28.4 / MAX: 36.15

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ba4812162015.1815.49MIN: 12.92 / MAX: 16.18MIN: 13.24 / MAX: 15.91

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ba51015202519.2219.76MIN: 17.83 / MAX: 19.83MIN: 18.28 / MAX: 20.45

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab51015202519.6620.77MIN: 18.64 / MAX: 20.3MIN: 17.08 / MAX: 21.79

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ba51015202518.5920.11MIN: 17.92 / MAX: 18.9MIN: 18.97 / MAX: 21.46

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ba36912159.179.21MIN: 7.84 / MAX: 9.75MIN: 8.4 / MAX: 9.79

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ba36912158.699.15MIN: 8.29 / MAX: 9.38MIN: 8.27 / MAX: 9.72

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ab36912158.679.34MIN: 7.68 / MAX: 9.4MIN: 8.61 / MAX: 9.98

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lab36912159.339.55MIN: 8.18 / MAX: 9.65MIN: 8.99 / MAX: 9.9

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lab2468106.226.34MIN: 5.81 / MAX: 6.46MIN: 6.05 / MAX: 6.53

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lba2468106.186.22MIN: 5.92 / MAX: 6.42MIN: 5.89 / MAX: 6.48

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lba2468105.906.22MIN: 5.51 / MAX: 6.32MIN: 5.84 / MAX: 6.49

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e12ab51015202519.2719.251. (CXX) g++ options: -O3

Stockfish

This is a test of Stockfish, an advanced open-source C++11 chess benchmark that can scale up to 1024 CPU threads. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterStockfish 16.1Chess Benchmarkab3M6M9M12M15M11509974129428041. (CXX) g++ options: -lgcov -m64 -lpthread -fno-exceptions -std=c++17 -fno-peel-loops -fno-tracer -pedantic -O3 -funroll-loops -msse -msse3 -mpopcnt -mavx2 -mbmi -msse4.1 -mssse3 -msse2 -mbmi2 -flto -flto-partition=one -flto=jobserver

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 4Kab0.82221.64442.46663.28884.1113.6353.6541. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 4Kba61218243026.0026.061. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 4Kba142842567062.7464.011. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 4Kba153045607564.3865.501. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 1080pab369121512.9313.031. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 1080pba2040608010083.8786.631. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 1080pba60120180240300266.97285.021. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 1080pab70140210280350329.50332.901. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Blender

Blender is an open-source 3D creation and modeling software project. This test is of Blender's Cycles performance with various sample files. GPU computing via NVIDIA OptiX and NVIDIA CUDA is currently supported as well as HIP for AMD Radeon GPUs and Intel oneAPI for Intel Graphics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlyba306090120150154.22152.81

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Junkshop - Compute: CPU-Onlyab50100150200250208.77208.69

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Classroom - Compute: CPU-Onlyba90180270360450397.59395.99

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlyab4080120160200186.33185.76

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Barbershop - Compute: CPU-Onlyba300600900120015001490.951474.59

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlyba100200300400500482.13481.62

Timed Mesa Compilation

This test profile times how long it takes to compile Mesa with Meson/Ninja. For minimizing build dependencies and avoid versioning conflicts, test this is just the core Mesa build without LLVM or the extra Gallium3D/Mesa drivers enabled. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Mesa Compilation 24.0Time To Compileab102030405044.5643.99