pytorch tensorflow AMD Ryzen 9 7950X 16-Core testing with a ASUS ROG STRIX X670E-E GAMING WIFI (1905 BIOS) and NVIDIA GeForce RTX 3080 10GB on Ubuntu 23.10 via the Phoronix Test Suite.
Compare your own system(s) to this result file with the
Phoronix Test Suite by running the command:
phoronix-test-suite benchmark 2403274-PTS-PYTORCHT32 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 Processor: AMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads), Motherboard: ASUS ROG STRIX X670E-E GAMING WIFI (1905 BIOS), Chipset: AMD Device 14d8, Memory: 2 x 16GB DRAM-6000MT/s G Skill F5-6000J3038F16G, Disk: 2000GB Samsung SSD 980 PRO 2TB + 123GB SanDisk 3.2Gen1, Graphics: NVIDIA GeForce RTX 3080 10GB, Audio: NVIDIA GA102 HD Audio, Monitor: DELL U2723QE, Network: Intel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411
OS: Ubuntu 23.10, Kernel: 6.7.0-060700-generic (x86_64), Desktop: GNOME Shell 45.2, Display Server: X Server 1.21.1.7, Display Driver: NVIDIA 550.54.14, OpenGL: 4.6.0, OpenCL: OpenCL 3.0 CUDA 12.4.89, Compiler: GCC 13.2.0, File-System: ext4, Screen Resolution: 3840x2160
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa601206Python Notes: Python 3.11.6Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
TensorFlow This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: VGG-16 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 1.2713 2.5426 3.8139 5.0852 6.3565 SE +/- 0.00, N = 3 5.65
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: AlexNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 4 8 12 16 20 SE +/- 0.01, N = 3 16.11
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: VGG-16 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 4 8 12 16 20 SE +/- 0.12, N = 3 18.05
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: VGG-16 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.02, N = 3 18.99
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: VGG-16 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.01, N = 3 19.68
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: AlexNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 40 80 120 160 200 SE +/- 0.23, N = 3 170.76
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: AlexNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 60 120 180 240 300 SE +/- 0.04, N = 3 254.51
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: AlexNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 70 140 210 280 350 SE +/- 0.08, N = 3 334.74
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: GoogLeNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 14 28 42 56 70 SE +/- 0.30, N = 3 61.10
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 4 8 12 16 20 SE +/- 0.03, N = 3 16.15
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: GoogLeNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 30 60 90 120 150 SE +/- 0.23, N = 3 142.24
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 9 18 27 36 45 SE +/- 0.04, N = 3 41.34
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: GoogLeNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 30 60 90 120 150 SE +/- 0.10, N = 3 141.41
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 10 20 30 40 50 SE +/- 0.01, N = 3 42.48
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: GoogLeNet AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 30 60 90 120 150 SE +/- 0.01, N = 3 138.76
OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 10 20 30 40 50 SE +/- 0.01, N = 3 42.68
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-152 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 7 14 21 28 35 SE +/- 0.31, N = 3 29.39 MIN: 22.95 / MAX: 30.32
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 11 22 33 44 55 SE +/- 0.29, N = 3 48.85 MIN: 47.27 / MAX: 50.05
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 11 22 33 44 55 SE +/- 0.47, N = 3 48.54 MIN: 38.25 / MAX: 50.46
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 11 22 33 44 55 SE +/- 0.40, N = 3 48.57 MIN: 45.94 / MAX: 49.92
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.15, N = 3 20.08 MIN: 15.43 / MAX: 20.67
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-50 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 11 22 33 44 55 SE +/- 0.15, N = 3 48.51 MIN: 46.12 / MAX: 49.98
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-152 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.14, N = 3 19.52 MIN: 18.86 / MAX: 20.1
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-152 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.21, N = 3 19.69 MIN: 19.03 / MAX: 20.31
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-152 AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 5 10 15 20 25 SE +/- 0.21, N = 3 19.90 MIN: 19.05 / MAX: 20.71
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 4 8 12 16 20 SE +/- 0.05, N = 3 16.53 MIN: 14.7 / MAX: 16.81
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 3 6 9 12 15 SE +/- 0.15, N = 3 11.56 MIN: 9.38 / MAX: 12.7
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 3 6 9 12 15 SE +/- 0.05, N = 3 11.86 MIN: 9.68 / MAX: 12.71
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 3 6 9 12 15 SE +/- 0.08, N = 3 11.77 MIN: 9.64 / MAX: 12.77
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 3 6 9 12 15 SE +/- 0.10, N = 3 11.84 MIN: 9.61 / MAX: 12.83
AMD Ryzen 9 7950X 16-Core - NVIDIA GeForce RTX 3080 Processor: AMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads), Motherboard: ASUS ROG STRIX X670E-E GAMING WIFI (1905 BIOS), Chipset: AMD Device 14d8, Memory: 2 x 16GB DRAM-6000MT/s G Skill F5-6000J3038F16G, Disk: 2000GB Samsung SSD 980 PRO 2TB + 123GB SanDisk 3.2Gen1, Graphics: NVIDIA GeForce RTX 3080 10GB, Audio: NVIDIA GA102 HD Audio, Monitor: DELL U2723QE, Network: Intel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411
OS: Ubuntu 23.10, Kernel: 6.7.0-060700-generic (x86_64), Desktop: GNOME Shell 45.2, Display Server: X Server 1.21.1.7, Display Driver: NVIDIA 550.54.14, OpenGL: 4.6.0, OpenCL: OpenCL 3.0 CUDA 12.4.89, Compiler: GCC 13.2.0, File-System: ext4, Screen Resolution: 3840x2160
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa601206Python Notes: Python 3.11.6Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 27 March 2024 12:25 by user pts.