AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.
a Kernel Notes: Transparent Huge Pages: madviseCompiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103Python Notes: Python 3.10.6Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
b c Processor: AMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads), Motherboard: NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS), Chipset: AMD Renoir/Cezanne, Memory: 2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWE, Disk: Samsung SSD 970 EVO Plus 500GB, Graphics: AMD Lucienne 512MB (1800/400MHz), Audio: AMD Renoir Radeon HD Audio, Network: Realtek RTL8111/8168/8411 + Intel Wi-Fi 6 AX200
OS: Tuxedo 22.04, Kernel: 6.0.0-1010-oem (x86_64), Desktop: KDE Plasma 5.26.5, Display Server: X Server 1.21.1.3, OpenGL: 4.6 Mesa 22.3.7 (LLVM 14.0.0 DRM 3.48), Vulkan: 1.3.230, Compiler: GCC 11.3.0, File-System: ext4, Screen Resolution: 1920x1080
ffhgf OpenBenchmarking.org Phoronix Test Suite AMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads) NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) AMD Renoir/Cezanne 2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWE Samsung SSD 970 EVO Plus 500GB AMD Lucienne 512MB (1800/400MHz) AMD Renoir Radeon HD Audio Realtek RTL8111/8168/8411 + Intel Wi-Fi 6 AX200 Tuxedo 22.04 6.0.0-1010-oem (x86_64) KDE Plasma 5.26.5 X Server 1.21.1.3 4.6 Mesa 22.3.7 (LLVM 14.0.0 DRM 3.48) 1.3.230 GCC 11.3.0 ext4 1920x1080 Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution Ffhgf Benchmarks System Logs - Transparent Huge Pages: madvise - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103 - Python 3.10.6 - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
a b c Result Overview Phoronix Test Suite 100% 101% 101% 102% 103% WavPack Audio Encoding Primesieve JPEG-XL Decoding libjxl srsRAN Project SVT-AV1 oneDNN Parallel BZIP2 Compression Chaos Group V-RAY OpenVINO Neural Magic DeepSparse JPEG-XL libjxl Google Draco
ffhgf primesieve: 1e13 jpegxl: JPEG - 80 jpegxl: PNG - 80 onednn: Recurrent Neural Network Training - CPU onednn: Recurrent Neural Network Inference - CPU svt-av1: Preset 4 - Bosphorus 4K v-ray: CPU jpegxl: PNG - 90 jpegxl: JPEG - 90 jpegxl: JPEG - 100 jpegxl: PNG - 100 openvino: Face Detection FP16-INT8 - CPU openvino: Face Detection FP16-INT8 - CPU openvino: Face Detection FP16 - CPU openvino: Face Detection FP16 - CPU openvino: Machine Translation EN To DE FP16 - CPU openvino: Machine Translation EN To DE FP16 - CPU openvino: Person Detection FP32 - CPU openvino: Person Detection FP32 - CPU openvino: Person Detection FP16 - CPU openvino: Person Detection FP16 - CPU openvino: Road Segmentation ADAS FP16-INT8 - CPU openvino: Road Segmentation ADAS FP16-INT8 - CPU deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream openvino: Noise Suppression Poconet-Like FP16 - CPU openvino: Noise Suppression Poconet-Like FP16 - CPU openvino: Person Vehicle Bike Detection FP16 - CPU openvino: Person Vehicle Bike Detection FP16 - CPU openvino: Road Segmentation ADAS FP16 - CPU openvino: Road Segmentation ADAS FP16 - CPU openvino: Person Re-Identification Retail FP16 - CPU openvino: Person Re-Identification Retail FP16 - CPU openvino: Handwritten English Recognition FP16-INT8 - CPU openvino: Handwritten English Recognition FP16-INT8 - CPU openvino: Vehicle Detection FP16-INT8 - CPU openvino: Vehicle Detection FP16-INT8 - CPU openvino: Handwritten English Recognition FP16 - CPU openvino: Handwritten English Recognition FP16 - CPU openvino: Face Detection Retail FP16-INT8 - CPU openvino: Face Detection Retail FP16-INT8 - CPU openvino: Weld Porosity Detection FP16-INT8 - CPU openvino: Weld Porosity Detection FP16-INT8 - CPU openvino: Vehicle Detection FP16 - CPU openvino: Vehicle Detection FP16 - CPU openvino: Weld Porosity Detection FP16 - CPU openvino: Weld Porosity Detection FP16 - CPU openvino: Face Detection Retail FP16 - CPU openvino: Face Detection Retail FP16 - CPU openvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPU openvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPU openvino: Age Gender Recognition Retail 0013 FP16 - CPU openvino: Age Gender Recognition Retail 0013 FP16 - CPU deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream jpegxl-decode: 1 deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream svt-av1: Preset 8 - Bosphorus 4K jpegxl-decode: All primesieve: 1e12 svt-av1: Preset 4 - Bosphorus 1080p onednn: Deconvolution Batch shapes_1d - CPU srsran: PDSCH Processor Benchmark, Throughput Total onednn: IP Shapes 1D - CPU compress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compression svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 1080p draco: Church Facade onednn: IP Shapes 3D - CPU draco: Lion encode-wavpack: WAV To WavPack srsran: PDSCH Processor Benchmark, Throughput Thread onednn: Convolution Batch Shapes Auto - CPU svt-av1: Preset 12 - Bosphorus 1080p onednn: Deconvolution Batch shapes_3d - CPU svt-av1: Preset 13 - Bosphorus 1080p a b c 473.567 17.449 17.594 6067.92 3135.38 2.06 7052 16.214 16.51 6.808 6.88 2321.44 1.71 2740.33 1.45 232.78 17.17 271.53 14.71 269.72 14.83 56.83 70.33 634.5354 4.7151 18.01 221.74 20.87 191.4 167.55 23.86 18.79 212.6 91.44 65.59 28.16 141.94 98.43 60.91 8.69 459.92 31.85 188.24 38.82 102.94 30.28 131.99 10.53 378.86 1.18 5051.32 1.88 3160.64 29.534 101.4254 11.6311 85.9092 58.3096 51.4072 210.0086 4.7614 25.6066 39.0337 681.9059 4.3724 54.82 230.3157 4.3416 665.1773 4.5018 229.5887 4.3554 73.352 40.87 26.698 37.4422 59.1547 50.6529 9.5805 312.3789 43.2842 23.0973 120.27 24.9236 59.8992 50.0338 21.4013 46.6998 4.5244 220.4253 21.4706 46.5486 16.292 191.398 37.342 7.495 11.7594 2124.4 7.22621 14.579856 43.434 45.109 51.475 9515 14.3913 6409 7.692 314.8 22.4888 202.302 11.7203 245.376 464.649 17.445 17.512 6016.25 3110.94 2.073 7019 16.19 16.492 6.812 6.88 2456.33 1.62 2748.14 1.44 231.3 17.27 274 14.57 274.43 14.56 56.84 70.31 633.8932 4.7167 18.02 221.65 20.92 191 166.76 23.97 18.78 212.76 91.39 65.61 28.49 140.29 97.56 61.46 8.71 458.71 31.89 188.05 38.5 103.79 30.32 131.82 10.59 376.67 1.17 5066.06 1.89 3147.58 29.4939 101.5569 11.5237 86.7099 58.5538 51.1871 209.9382 4.763 25.6128 39.0245 670.4488 4.4546 55.055 230.6559 4.3352 665.4893 4.49 229.4528 4.358 73.1801 40.953 26.6361 37.5286 58.4502 51.3019 9.5031 314.947 43.2686 23.1057 118.9649 25.18 58.1743 51.5443 21.4271 46.6428 4.5824 217.6355 21.3682 46.7715 16.46 197.721 36.222 7.555 12.086 2110.1 7.3269 14.50946 45.377 45.65 52.064 9536 14.3419 6315 7.578 302.6 22.5758 206.832 11.9338 250.82 462.998 17.532 17.606 6024.94 3118.61 2.077 7052 16.28 16.489 6.815 6.897 2437.33 1.62 2752.56 1.45 231.39 17.26 275.49 14.51 268.2 14.9 57.09 70.01 632.7488 4.7347 18 221.88 21 190.23 166.96 23.94 18.85 211.95 91.41 65.6 28.46 140.41 97.51 61.48 8.8 453.71 32 187.42 38.74 103.13 30.22 132.29 10.6 376.3 1.18 5032.95 1.88 3154.67 29.4531 101.7126 11.5086 86.8258 58.6004 51.139 209.3586 4.7761 25.571 39.0886 672.1069 4.4236 55.732 229.9275 4.349 666.7407 4.49 230.9809 4.3291 73.2979 40.8905 26.6514 37.5073 58.4006 51.3099 9.5153 314.5417 43.353 23.0607 119.8962 25.0064 59.2132 50.6221 21.3677 46.7734 4.5062 221.3073 21.3915 46.7201 16.48 197.639 36.284 7.569 11.5182 2116.7 7.1952 14.490876 45.438 45.471 52.162 9766 14.289 6400 7.794 307 22.5887 204.567 11.6718 252.602 OpenBenchmarking.org
JPEG-XL libjxl The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: JPEG - Quality: 80 b a c 4 8 12 16 20 17.45 17.45 17.53 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Recurrent Neural Network Training - Engine: CPU a c b 1300 2600 3900 5200 6500 6067.92 6024.94 6016.25 MIN: 6009.45 MIN: 5948.41 MIN: 5939.52 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Recurrent Neural Network Inference - Engine: CPU a c b 700 1400 2100 2800 3500 3135.38 3118.61 3110.94 MIN: 3072.86 MIN: 3052.5 MIN: 3038.51 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b c 0.4673 0.9346 1.4019 1.8692 2.3365 2.060 2.073 2.077 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
JPEG-XL libjxl The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: PNG - Quality: 90 b a c 4 8 12 16 20 16.19 16.21 16.28 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
OpenVINO This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU b c a 500 1000 1500 2000 2500 2456.33 2437.33 2321.44 MIN: 1779.95 / MAX: 3009.84 MIN: 2025.66 / MAX: 3552.28 MIN: 2113.11 / MAX: 3253.9 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU b c a 0.3848 0.7696 1.1544 1.5392 1.924 1.62 1.62 1.71 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU c b a 600 1200 1800 2400 3000 2752.56 2748.14 2740.33 MIN: 2291.93 / MAX: 2877.15 MIN: 2160.17 / MAX: 2860.69 MIN: 2203.03 / MAX: 2836.59 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU b a c 0.3263 0.6526 0.9789 1.3052 1.6315 1.44 1.45 1.45 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU a c b 50 100 150 200 250 232.78 231.39 231.30 MIN: 158.33 / MAX: 295.68 MIN: 171.44 / MAX: 265.55 MIN: 164.36 / MAX: 262.63 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU a c b 4 8 12 16 20 17.17 17.26 17.27 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU c b a 60 120 180 240 300 275.49 274.00 271.53 MIN: 229.07 / MAX: 422.38 MIN: 210.36 / MAX: 310.41 MIN: 210.59 / MAX: 309.26 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU c b a 4 8 12 16 20 14.51 14.57 14.71 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU b a c 60 120 180 240 300 274.43 269.72 268.20 MIN: 148.02 / MAX: 308.41 MIN: 234.64 / MAX: 306.72 MIN: 136.25 / MAX: 310.48 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU b a c 4 8 12 16 20 14.56 14.83 14.90 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU c b a 13 26 39 52 65 57.09 56.84 56.83 MIN: 33.74 / MAX: 79.45 MIN: 34.6 / MAX: 77.32 MIN: 42.49 / MAX: 78.95 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU c b a 16 32 48 64 80 70.01 70.31 70.33 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU b a c 4 8 12 16 20 18.02 18.01 18.00 MIN: 13.78 / MAX: 33.52 MIN: 14.99 / MAX: 32.02 MIN: 13.26 / MAX: 32.43 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU b a c 50 100 150 200 250 221.65 221.74 221.88 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU c b a 5 10 15 20 25 21.00 20.92 20.87 MIN: 15.65 / MAX: 37.11 MIN: 14.64 / MAX: 37.38 MIN: 13.72 / MAX: 44.43 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU c b a 40 80 120 160 200 190.23 191.00 191.40 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU a c b 40 80 120 160 200 167.55 166.96 166.76 MIN: 116.23 / MAX: 213.59 MIN: 67.28 / MAX: 215 MIN: 73.08 / MAX: 216.16 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU a c b 6 12 18 24 30 23.86 23.94 23.97 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU c a b 5 10 15 20 25 18.85 18.79 18.78 MIN: 11.63 / MAX: 37.02 MIN: 15.44 / MAX: 33.87 MIN: 12.18 / MAX: 33.46 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU c a b 50 100 150 200 250 211.95 212.60 212.76 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU a c b 20 40 60 80 100 91.44 91.41 91.39 MIN: 77.37 / MAX: 116.23 MIN: 59.9 / MAX: 113.94 MIN: 75.74 / MAX: 114.4 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU a c b 15 30 45 60 75 65.59 65.60 65.61 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU b c a 7 14 21 28 35 28.49 28.46 28.16 MIN: 16.22 / MAX: 42.86 MIN: 22.46 / MAX: 44.26 MIN: 22.61 / MAX: 42.4 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU b c a 30 60 90 120 150 140.29 140.41 141.94 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU a b c 20 40 60 80 100 98.43 97.56 97.51 MIN: 63.19 / MAX: 224.34 MIN: 63.86 / MAX: 122.52 MIN: 64.36 / MAX: 125.21 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU a b c 14 28 42 56 70 60.91 61.46 61.48 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU c b a 2 4 6 8 10 8.80 8.71 8.69 MIN: 5.6 / MAX: 19.39 MIN: 5.16 / MAX: 17.4 MIN: 6.54 / MAX: 18.65 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU c b a 100 200 300 400 500 453.71 458.71 459.92 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU c b a 7 14 21 28 35 32.00 31.89 31.85 MIN: 23.29 / MAX: 47.13 MIN: 18.32 / MAX: 45.73 MIN: 25.39 / MAX: 45.6 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU c b a 40 80 120 160 200 187.42 188.05 188.24 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU a c b 9 18 27 36 45 38.82 38.74 38.50 MIN: 25.47 / MAX: 87.45 MIN: 18.87 / MAX: 78.37 MIN: 29.34 / MAX: 61 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU a c b 20 40 60 80 100 102.94 103.13 103.79 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU b a c 7 14 21 28 35 30.32 30.28 30.22 MIN: 17.72 / MAX: 46.79 MIN: 25.1 / MAX: 48.08 MIN: 23.15 / MAX: 46.15 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU b a c 30 60 90 120 150 131.82 131.99 132.29 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU c b a 3 6 9 12 15 10.60 10.59 10.53 MIN: 7.14 / MAX: 22.37 MIN: 7.59 / MAX: 21.42 MIN: 5.73 / MAX: 24.87 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU c b a 80 160 240 320 400 376.30 376.67 378.86 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU c a b 0.2655 0.531 0.7965 1.062 1.3275 1.18 1.18 1.17 MIN: 0.59 / MAX: 15.55 MIN: 0.58 / MAX: 10.19 MIN: 0.58 / MAX: 9.01 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU c a b 1100 2200 3300 4400 5500 5032.95 5051.32 5066.06 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU b c a 0.4253 0.8506 1.2759 1.7012 2.1265 1.89 1.88 1.88 MIN: 1.01 / MAX: 84.2 MIN: 0.95 / MAX: 10.89 MIN: 1.01 / MAX: 12.21 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU b c a 700 1400 2100 2800 3500 3147.58 3154.67 3160.64 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
JPEG-XL Decoding libjxl The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is suited for JPEG XL decode performance testing to PNG output file, the pts/jpexl test is for encode performance. The JPEG XL encoding/decoding is done using the libjxl codebase. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org MP/s, More Is Better JPEG-XL Decoding libjxl 0.10.1 CPU Threads: 1 a b c 13 26 39 52 65 54.82 55.06 55.73
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c 4 8 12 16 20 16.29 16.46 16.48 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
JPEG-XL Decoding libjxl The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is suited for JPEG XL decode performance testing to PNG output file, the pts/jpexl test is for encode performance. The JPEG XL encoding/decoding is done using the libjxl codebase. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org MP/s, More Is Better JPEG-XL Decoding libjxl 0.10.1 CPU Threads: All a c b 40 80 120 160 200 191.40 197.64 197.72
Neural Magic DeepSparse This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.
Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream
a: The test quit with a non-zero exit status.
b: The test quit with a non-zero exit status.
c: The test quit with a non-zero exit status.
Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream
a: The test quit with a non-zero exit status.
b: The test quit with a non-zero exit status.
c: The test quit with a non-zero exit status.
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b c 2 4 6 8 10 7.495 7.555 7.569 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Deconvolution Batch shapes_1d - Engine: CPU b a c 3 6 9 12 15 12.09 11.76 11.52 MIN: 8.58 MIN: 8.57 MIN: 8.53 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
srsRAN Project OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Total b c a 500 1000 1500 2000 2500 2110.1 2116.7 2124.4 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: IP Shapes 1D - Engine: CPU b a c 2 4 6 8 10 7.32690 7.22621 7.19520 MIN: 6.31 MIN: 6.22 MIN: 6.19 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b c 10 20 30 40 50 43.43 45.38 45.44 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 4K a c b 10 20 30 40 50 45.11 45.47 45.65 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c 12 24 36 48 60 51.48 52.06 52.16 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: IP Shapes 3D - Engine: CPU a b c 4 8 12 16 20 14.39 14.34 14.29 MIN: 13.56 MIN: 13.53 MIN: 13.53 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
srsRAN Project OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Thread b c a 70 140 210 280 350 302.6 307.0 314.8 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Convolution Batch Shapes Auto - Engine: CPU c b a 5 10 15 20 25 22.59 22.58 22.49 MIN: 21.74 MIN: 21.78 MIN: 21.68 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a c b 50 100 150 200 250 202.30 204.57 206.83 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
oneDNN This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Deconvolution Batch shapes_3d - Engine: CPU b a c 3 6 9 12 15 11.93 11.72 11.67 MIN: 11.26 MIN: 11.2 MIN: 11.19 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
SVT-AV1 This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.
OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c 60 120 180 240 300 245.38 250.82 252.60 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
a Kernel Notes: Transparent Huge Pages: madviseCompiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103Python Notes: Python 3.10.6Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 15 March 2024 18:30 by user phoronix.
b Kernel Notes: Transparent Huge Pages: madviseCompiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103Python Notes: Python 3.10.6Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 15 March 2024 19:58 by user phoronix.
c Processor: AMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads), Motherboard: NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS), Chipset: AMD Renoir/Cezanne, Memory: 2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWE, Disk: Samsung SSD 970 EVO Plus 500GB, Graphics: AMD Lucienne 512MB (1800/400MHz), Audio: AMD Renoir Radeon HD Audio, Network: Realtek RTL8111/8168/8411 + Intel Wi-Fi 6 AX200
OS: Tuxedo 22.04, Kernel: 6.0.0-1010-oem (x86_64), Desktop: KDE Plasma 5.26.5, Display Server: X Server 1.21.1.3, OpenGL: 4.6 Mesa 22.3.7 (LLVM 14.0.0 DRM 3.48), Vulkan: 1.3.230, Compiler: GCC 11.3.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madviseCompiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -vProcessor Notes: Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103Python Notes: Python 3.10.6Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 16 March 2024 05:46 by user phoronix.