ffhgf

AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403164-NE-FFHGF146295
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 15
  1 Hour, 40 Minutes
b
March 15
  1 Hour, 39 Minutes
c
March 16
  1 Hour, 40 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 39 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


ffhgfOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads)NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS)AMD Renoir/Cezanne2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWESamsung SSD 970 EVO Plus 500GBAMD Lucienne 512MB (1800/400MHz)AMD Renoir Radeon HD AudioRealtek RTL8111/8168/8411 + Intel Wi-Fi 6 AX200Tuxedo 22.046.0.0-1010-oem (x86_64)KDE Plasma 5.26.5X Server 1.21.1.34.6 Mesa 22.3.7 (LLVM 14.0.0 DRM 3.48)1.3.230GCC 11.3.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionFfhgf BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103 - Python 3.10.6- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%101%102%103%WavPack Audio EncodingPrimesieveJPEG-XL Decoding libjxlsrsRAN ProjectSVT-AV1oneDNNParallel BZIP2 CompressionChaos Group V-RAYOpenVINONeural Magic DeepSparseJPEG-XL libjxlGoogle Draco

ffhgfprimesieve: 1e13jpegxl: JPEG - 80jpegxl: PNG - 80onednn: Recurrent Neural Network Training - CPUonednn: Recurrent Neural Network Inference - CPUsvt-av1: Preset 4 - Bosphorus 4Kv-ray: CPUjpegxl: PNG - 90jpegxl: JPEG - 90jpegxl: JPEG - 100jpegxl: PNG - 100openvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamjpegxl-decode: 1deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamsvt-av1: Preset 8 - Bosphorus 4Kjpegxl-decode: Allprimesieve: 1e12svt-av1: Preset 4 - Bosphorus 1080ponednn: Deconvolution Batch shapes_1d - CPUsrsran: PDSCH Processor Benchmark, Throughput Totalonednn: IP Shapes 1D - CPUcompress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compressionsvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 1080pdraco: Church Facadeonednn: IP Shapes 3D - CPUdraco: Lionencode-wavpack: WAV To WavPacksrsran: PDSCH Processor Benchmark, Throughput Threadonednn: Convolution Batch Shapes Auto - CPUsvt-av1: Preset 12 - Bosphorus 1080ponednn: Deconvolution Batch shapes_3d - CPUsvt-av1: Preset 13 - Bosphorus 1080pabc473.56717.44917.5946067.923135.382.06705216.21416.516.8086.882321.441.712740.331.45232.7817.17271.5314.71269.7214.8356.8370.33634.53544.715118.01221.7420.87191.4167.5523.8618.79212.691.4465.5928.16141.9498.4360.918.69459.9231.85188.2438.82102.9430.28131.9910.53378.861.185051.321.883160.6429.534101.425411.631185.909258.309651.4072210.00864.761425.606639.0337681.90594.372454.82230.31574.3416665.17734.5018229.58874.355473.35240.8726.69837.442259.154750.65299.5805312.378943.284223.0973120.2724.923659.899250.033821.401346.69984.5244220.425321.470646.548616.292191.39837.3427.49511.75942124.47.2262114.57985643.43445.10951.475951514.391364097.692314.822.4888202.30211.7203245.376464.64917.44517.5126016.253110.942.073701916.1916.4926.8126.882456.331.622748.141.44231.317.2727414.57274.4314.5656.8470.31633.89324.716718.02221.6520.92191166.7623.9718.78212.7691.3965.6128.49140.2997.5661.468.71458.7131.89188.0538.5103.7930.32131.8210.59376.671.175066.061.893147.5829.4939101.556911.523786.709958.553851.1871209.93824.76325.612839.0245670.44884.454655.055230.65594.3352665.48934.49229.45284.35873.180140.95326.636137.528658.450251.30199.5031314.94743.268623.1057118.964925.1858.174351.544321.427146.64284.5824217.635521.368246.771516.46197.72136.2227.55512.0862110.17.326914.5094645.37745.6552.064953614.341963157.578302.622.5758206.83211.9338250.82462.99817.53217.6066024.943118.612.077705216.2816.4896.8156.8972437.331.622752.561.45231.3917.26275.4914.51268.214.957.0970.01632.74884.734718221.8821190.23166.9623.9418.85211.9591.4165.628.46140.4197.5161.488.8453.7132187.4238.74103.1330.22132.2910.6376.31.185032.951.883154.6729.4531101.712611.508686.825858.600451.139209.35864.776125.57139.0886672.10694.423655.732229.92754.349666.74074.49230.98094.329173.297940.890526.651437.507358.400651.30999.5153314.541743.35323.0607119.896225.006459.213250.622121.367746.77344.5062221.307321.391546.720116.48197.63936.2847.56911.51822116.77.195214.49087645.43845.47152.162976614.28964007.79430722.5887204.56711.6718252.602OpenBenchmarking.org

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e13abc100200300400500473.57464.65463.001. (CXX) g++ options: -O3

JPEG-XL libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 80bac4812162017.4517.4517.531. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 80bac4812162017.5117.5917.611. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUacb130026003900520065006067.926024.946016.25MIN: 6009.45MIN: 5948.41MIN: 5939.521. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUacb70014002100280035003135.383118.613110.94MIN: 3072.86MIN: 3052.5MIN: 3038.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 4Kabc0.46730.93461.40191.86922.33652.0602.0732.0771. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Chaos Group V-RAY

This is a test of Chaos Group's V-RAY benchmark. V-RAY is a commercial renderer that can integrate with various creator software products like SketchUp and 3ds Max. The V-RAY benchmark is standalone and supports CPU and NVIDIA CUDA/RTX based rendering. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgvsamples, More Is BetterChaos Group V-RAY 6.0Mode: CPUbac15003000450060007500701970527052

JPEG-XL libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 90bac4812162016.1916.2116.281. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 90cba4812162016.4916.4916.511. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 100abc2468106.8086.8126.8151. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 100abc2468106.8806.8806.8971. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUbca50010001500200025002456.332437.332321.44MIN: 1779.95 / MAX: 3009.84MIN: 2025.66 / MAX: 3552.28MIN: 2113.11 / MAX: 3253.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUbca0.38480.76961.15441.53921.9241.621.621.711. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUcba60012001800240030002752.562748.142740.33MIN: 2291.93 / MAX: 2877.15MIN: 2160.17 / MAX: 2860.69MIN: 2203.03 / MAX: 2836.591. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUbac0.32630.65260.97891.30521.63151.441.451.451. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUacb50100150200250232.78231.39231.30MIN: 158.33 / MAX: 295.68MIN: 171.44 / MAX: 265.55MIN: 164.36 / MAX: 262.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUacb4812162017.1717.2617.271. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUcba60120180240300275.49274.00271.53MIN: 229.07 / MAX: 422.38MIN: 210.36 / MAX: 310.41MIN: 210.59 / MAX: 309.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUcba4812162014.5114.5714.711. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUbac60120180240300274.43269.72268.20MIN: 148.02 / MAX: 308.41MIN: 234.64 / MAX: 306.72MIN: 136.25 / MAX: 310.481. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUbac4812162014.5614.8314.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUcba132639526557.0956.8456.83MIN: 33.74 / MAX: 79.45MIN: 34.6 / MAX: 77.32MIN: 42.49 / MAX: 78.951. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUcba163248648070.0170.3170.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamabc140280420560700634.54633.89632.75

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamabc1.06532.13063.19594.26125.32654.71514.71674.7347

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUbac4812162018.0218.0118.00MIN: 13.78 / MAX: 33.52MIN: 14.99 / MAX: 32.02MIN: 13.26 / MAX: 32.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUbac50100150200250221.65221.74221.881. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUcba51015202521.0020.9220.87MIN: 15.65 / MAX: 37.11MIN: 14.64 / MAX: 37.38MIN: 13.72 / MAX: 44.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUcba4080120160200190.23191.00191.401. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUacb4080120160200167.55166.96166.76MIN: 116.23 / MAX: 213.59MIN: 67.28 / MAX: 215MIN: 73.08 / MAX: 216.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUacb61218243023.8623.9423.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUcab51015202518.8518.7918.78MIN: 11.63 / MAX: 37.02MIN: 15.44 / MAX: 33.87MIN: 12.18 / MAX: 33.461. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUcab50100150200250211.95212.60212.761. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUacb2040608010091.4491.4191.39MIN: 77.37 / MAX: 116.23MIN: 59.9 / MAX: 113.94MIN: 75.74 / MAX: 114.41. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUacb153045607565.5965.6065.611. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUbca71421283528.4928.4628.16MIN: 16.22 / MAX: 42.86MIN: 22.46 / MAX: 44.26MIN: 22.61 / MAX: 42.41. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUbca306090120150140.29140.41141.941. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUabc2040608010098.4397.5697.51MIN: 63.19 / MAX: 224.34MIN: 63.86 / MAX: 122.52MIN: 64.36 / MAX: 125.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUabc142842567060.9161.4661.481. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUcba2468108.808.718.69MIN: 5.6 / MAX: 19.39MIN: 5.16 / MAX: 17.4MIN: 6.54 / MAX: 18.651. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUcba100200300400500453.71458.71459.921. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUcba71421283532.0031.8931.85MIN: 23.29 / MAX: 47.13MIN: 18.32 / MAX: 45.73MIN: 25.39 / MAX: 45.61. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUcba4080120160200187.42188.05188.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUacb91827364538.8238.7438.50MIN: 25.47 / MAX: 87.45MIN: 18.87 / MAX: 78.37MIN: 29.34 / MAX: 611. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUacb20406080100102.94103.13103.791. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUbac71421283530.3230.2830.22MIN: 17.72 / MAX: 46.79MIN: 25.1 / MAX: 48.08MIN: 23.15 / MAX: 46.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUbac306090120150131.82131.99132.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUcba369121510.6010.5910.53MIN: 7.14 / MAX: 22.37MIN: 7.59 / MAX: 21.42MIN: 5.73 / MAX: 24.871. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUcba80160240320400376.30376.67378.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab0.26550.5310.79651.0621.32751.181.181.17MIN: 0.59 / MAX: 15.55MIN: 0.58 / MAX: 10.19MIN: 0.58 / MAX: 9.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab110022003300440055005032.955051.325066.061. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUbca0.42530.85061.27591.70122.12651.891.881.88MIN: 1.01 / MAX: 84.2MIN: 0.95 / MAX: 10.89MIN: 1.01 / MAX: 12.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUbca70014002100280035003147.583154.673160.641. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc71421283529.5329.4929.45

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamabc20406080100101.43101.56101.71

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamabc369121511.6311.5211.51

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamabc2040608010085.9186.7186.83

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamcba132639526558.6058.5558.31

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamcba122436486051.1451.1951.41

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamabc50100150200250210.01209.94209.36

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamabc1.07462.14923.22384.29845.3734.76144.76304.7761

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambac61218243025.6125.6125.57

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambac91827364539.0239.0339.09

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamacb150300450600750681.91672.11670.45

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamacb1.00232.00463.00694.00925.01154.37244.42364.4546

JPEG-XL Decoding libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is suited for JPEG XL decode performance testing to PNG output file, the pts/jpexl test is for encode performance. The JPEG XL encoding/decoding is done using the libjxl codebase. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: 1abc132639526554.8255.0655.73

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambac50100150200250230.66230.32229.93

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambac0.97851.9572.93553.9144.89254.33524.34164.3490

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamcba140280420560700666.74665.49665.18

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streambca1.01292.02583.03874.05165.06454.49004.49004.5018

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamcab50100150200250230.98229.59229.45

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamcab0.98061.96122.94183.92244.9034.32914.35544.3580

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamacb163248648073.3573.3073.18

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamacb91827364540.8740.8940.95

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamacb61218243026.7026.6526.64

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamacb91827364537.4437.5137.53

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamabc132639526559.1558.4558.40

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamabc122436486050.6551.3051.31

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamacb36912159.58059.51539.5031

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamacb70140210280350312.38314.54314.95

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamcab102030405043.3543.2843.27

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamcab61218243023.0623.1023.11

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamacb306090120150120.27119.90118.96

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamacb61218243024.9225.0125.18

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamacb132639526559.9059.2158.17

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamacb122436486050.0350.6251.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streambac51015202521.4321.4021.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streambac112233445546.6446.7046.77

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambac1.0312.0623.0934.1245.1554.58244.52444.5062

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambac50100150200250217.64220.43221.31

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamacb51015202521.4721.3921.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamacb112233445546.5546.7246.77

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 4Kabc4812162016.2916.4616.481. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

JPEG-XL Decoding libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is suited for JPEG XL decode performance testing to PNG output file, the pts/jpexl test is for encode performance. The JPEG XL encoding/decoding is done using the libjxl codebase. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: Allacb4080120160200191.40197.64197.72

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e12acb91827364537.3436.2836.221. (CXX) g++ options: -O3

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

a: The test quit with a non-zero exit status.

b: The test quit with a non-zero exit status.

c: The test quit with a non-zero exit status.

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

a: The test quit with a non-zero exit status.

b: The test quit with a non-zero exit status.

c: The test quit with a non-zero exit status.

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 1080pabc2468107.4957.5557.5691. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUbac369121512.0911.7611.52MIN: 8.58MIN: 8.57MIN: 8.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

srsRAN Project

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PDSCH Processor Benchmark, Throughput Totalbca50010001500200025002110.12116.72124.41. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUbac2468107.326907.226217.19520MIN: 6.31MIN: 6.22MIN: 6.191. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Parallel BZIP2 Compression

This test measures the time needed to compress a file (FreeBSD-13.0-RELEASE-amd64-memstick.img) using Parallel BZIP2 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterParallel BZIP2 Compression 1.1.13FreeBSD-13.0-RELEASE-amd64-memstick.img Compressionabc4812162014.5814.5114.491. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 4Kabc102030405043.4345.3845.441. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 4Kacb102030405045.1145.4745.651. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 1080pabc122436486051.4852.0652.161. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Google Draco

Draco is a library developed by Google for compressing/decompressing 3D geometric meshes and point clouds. This test profile uses some Artec3D PLY models as the sample 3D model input formats for Draco compression/decompression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Church Facadecba2K4K6K8K10K9766953695151. (CXX) g++ options: -O3

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUabc4812162014.3914.3414.29MIN: 13.56MIN: 13.53MIN: 13.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Google Draco

Draco is a library developed by Google for compressing/decompressing 3D geometric meshes and point clouds. This test profile uses some Artec3D PLY models as the sample 3D model input formats for Draco compression/decompression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Lionacb140028004200560070006409640063151. (CXX) g++ options: -O3

WavPack Audio Encoding

This test times how long it takes to encode a sample WAV file to WavPack format with very high quality settings. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWavPack Audio Encoding 5.7WAV To WavPackcab2468107.7947.6927.578

srsRAN Project

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PDSCH Processor Benchmark, Throughput Threadbca70140210280350302.6307.0314.81. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUcba51015202522.5922.5822.49MIN: 21.74MIN: 21.78MIN: 21.681. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 1080pacb50100150200250202.30204.57206.831. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUbac369121511.9311.7211.67MIN: 11.26MIN: 11.2MIN: 11.191. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 1080pabc60120180240300245.38250.82252.601. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

112 Results Shown

Primesieve
JPEG-XL libjxl:
  JPEG - 80
  PNG - 80
oneDNN:
  Recurrent Neural Network Training - CPU
  Recurrent Neural Network Inference - CPU
SVT-AV1
Chaos Group V-RAY
JPEG-XL libjxl:
  PNG - 90
  JPEG - 90
  JPEG - 100
  PNG - 100
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
Neural Magic DeepSparse:
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    ms/batch
    items/sec
OpenVINO:
  Noise Suppression Poconet-Like FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
  Person Re-Identification Retail FP16 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
Neural Magic DeepSparse:
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    ms/batch
    items/sec
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
    items/sec
JPEG-XL Decoding libjxl
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Synchronous Single-Stream:
    ms/batch
    items/sec
SVT-AV1
JPEG-XL Decoding libjxl
Primesieve
SVT-AV1
oneDNN
srsRAN Project
oneDNN
Parallel BZIP2 Compression
SVT-AV1:
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 8 - Bosphorus 1080p
Google Draco
oneDNN
Google Draco
WavPack Audio Encoding
srsRAN Project
oneDNN
SVT-AV1
oneDNN
SVT-AV1