ddfg

2 x AMD EPYC 9684X 96-Core testing with a AMD Titanite_4G (RTI1007B BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403164-NE-DDFG2505160
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 16
  36 Minutes
b
March 16
  1 Hour, 48 Minutes
c
March 16
  2 Hours, 38 Minutes
d
March 16
  36 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 25 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


ddfgOpenBenchmarking.orgPhoronix Test Suite2 x AMD EPYC 9684X 96-Core @ 2.55GHz (192 Cores / 384 Threads)AMD Titanite_4G (RTI1007B BIOS)AMD Device 14a41520GB3201GB Micron_7450_MTFDKCB3T2TFS + 257GB Flash DriveASPEEDBroadcom NetXtreme BCM5720 PCIeUbuntu 23.106.5.0-25-generic (x86_64)GCC 13.2.0ext4640x480ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelCompilerFile-SystemScreen ResolutionDdfg BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa10113e - Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdResult OverviewPhoronix Test Suite100%101%101%102%SVT-AV1PrimesieveNeural Magic DeepSparse

ddfgsvt-av1: Preset 4 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamprimesieve: 1e12primesieve: 1e13abcd8.55789.277149.069159.21822.964176.674572.349564.413132.952348.5165566.3853191.51371762.5286206.815417421.4665807.16992.935820.83031763.1949207.6733798.6248212.18121144.5034225.4674249.723464.89072598.208368.5822132.946748.5284713.544320.604717.22125.21854.37394.83215.49461.236424242.384847.973554.35344.8123119.90524.710483.65744.4325381.037615.389936.889114.5734715.459520.59911.16411.7898.57591.288163.175161.65322.898182.531566.993606.376132.981748.35555538.9806191.77141758.8057209.771117350.4640804.40252.860720.80521756.1742208.7235796.5966212.49451142.9944225.4496249.401864.85862595.176368.3972132.796848.4228717.490020.672717.30435.210954.48694.76425.51701.240924888.156348.033754.56604.7882120.17874.703583.84824.4329382.123715.398236.932414.6134717.256520.64411.16411.8488.48490.441160.560162.02023.474184.132568.209588.450132.879248.51785534.2604192.23351759.9562208.740617333.3501806.23382.500820.72591756.5604208.6327795.0277212.63901141.2417225.4415249.094364.92222595.478868.5565133.806148.3841715.877020.603717.31885.198554.45884.78755.52241.238128968.953648.217754.56104.7905120.39764.700283.92594.4329382.174215.384436.921614.5791709.258820.66071.15611.8718.63486.593163.5162.37722.713183.285577.444598.04133.01248.50955554.0345194.47291763.4247208.976717400.5797806.32192.927120.46221758.3058209.1911797.7062213.55551144.0054225.5614249.775464.9972592.851668.7657132.914848.379714.45620.607217.2575.138354.36094.78235.5021.237524331.062648.836454.5054.7773119.99934.680183.76574.4307381.123415.36636.956414.5348715.429420.66291.14211.841OpenBenchmarking.org

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 4Kcabd246810SE +/- 0.020, N = 3SE +/- 0.017, N = 38.4848.5578.5758.6341. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 4Kdacb20406080100SE +/- 0.91, N = 3SE +/- 0.83, N = 386.5989.2890.4491.291. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 4Kacbd4080120160200SE +/- 1.52, N = 15SE +/- 1.72, N = 5149.07160.56163.18163.501. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 4Kabcd4080120160200SE +/- 0.74, N = 3SE +/- 1.62, N = 5159.22161.65162.02162.381. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 1080pdbac612182430SE +/- 0.17, N = 3SE +/- 0.24, N = 322.7122.9022.9623.471. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 1080pabdc4080120160200SE +/- 0.56, N = 3SE +/- 2.01, N = 3176.67182.53183.29184.131. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 1080pbcad120240360480600SE +/- 3.34, N = 3SE +/- 5.33, N = 3566.99568.21572.35577.441. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 1080pacdb130260390520650SE +/- 6.58, N = 3SE +/- 4.06, N = 3564.41588.45598.04606.381. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamcabd306090120150SE +/- 0.23, N = 3SE +/- 0.21, N = 3132.88132.95132.98133.01

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambdac1122334455SE +/- 0.03, N = 3SE +/- 0.04, N = 348.3648.5148.5248.52

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda12002400360048006000SE +/- 7.14, N = 3SE +/- 6.35, N = 35534.265538.985554.035566.39

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamabcd4080120160200SE +/- 0.65, N = 3SE +/- 0.62, N = 3191.51191.77192.23194.47

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streambcad400800120016002000SE +/- 2.58, N = 3SE +/- 2.77, N = 31758.811759.961762.531763.42

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamacdb50100150200250SE +/- 0.35, N = 3SE +/- 0.44, N = 3206.82208.74208.98209.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda4K8K12K16K20KSE +/- 34.07, N = 3SE +/- 17.22, N = 317333.3517350.4617400.5817421.47

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambcda2004006008001000SE +/- 1.84, N = 3SE +/- 0.46, N = 3804.40806.23806.32807.17

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamcbda0.66061.32121.98182.64243.303SE +/- 0.1622, N = 12SE +/- 0.0343, N = 32.50082.86072.92712.9358

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.10, N = 3SE +/- 0.08, N = 320.4620.7320.8120.83

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streambcda400800120016002000SE +/- 3.28, N = 3SE +/- 1.97, N = 31756.171756.561758.311763.19

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamacbd50100150200250SE +/- 1.29, N = 3SE +/- 0.62, N = 3207.67208.63208.72209.19

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda2004006008001000SE +/- 1.69, N = 3SE +/- 0.80, N = 3795.03796.60797.71798.62

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamabcd50100150200250SE +/- 0.31, N = 3SE +/- 0.07, N = 3212.18212.49212.64213.56

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamcbda2004006008001000SE +/- 2.42, N = 3SE +/- 2.26, N = 31141.241142.991144.011144.50

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamcbad50100150200250SE +/- 0.10, N = 3SE +/- 0.36, N = 3225.44225.45225.47225.56

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamcbad50100150200250SE +/- 0.26, N = 3SE +/- 0.46, N = 3249.09249.40249.72249.78

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streambacd1530456075SE +/- 0.12, N = 3SE +/- 0.15, N = 364.8664.8964.9265.00

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca6001200180024003000SE +/- 2.93, N = 3SE +/- 1.45, N = 32592.852595.182595.482598.21

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambcad1530456075SE +/- 0.14, N = 3SE +/- 0.09, N = 368.4068.5668.5868.77

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streambdac306090120150SE +/- 0.27, N = 3SE +/- 0.72, N = 3132.80132.91132.95133.81

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.09, N = 3SE +/- 0.01, N = 348.3848.3848.4248.53

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streambcda150300450600750SE +/- 1.03, N = 3SE +/- 3.41, N = 3717.49715.88714.46713.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streambdac510152025SE +/- 0.01, N = 3SE +/- 0.02, N = 320.6720.6120.6020.60

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda48121620SE +/- 0.02, N = 3SE +/- 0.02, N = 317.3217.3017.2617.22

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamabcd1.17412.34823.52234.69645.8705SE +/- 0.0177, N = 3SE +/- 0.0167, N = 35.21805.21095.19855.1383

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streambcad1224364860SE +/- 0.09, N = 3SE +/- 0.08, N = 354.4954.4654.3754.36

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamacdb1.08722.17443.26164.34885.436SE +/- 0.0081, N = 3SE +/- 0.0100, N = 34.83214.78754.78234.7642

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda1.24252.4853.72754.976.2125SE +/- 0.0109, N = 3SE +/- 0.0052, N = 35.52245.51705.50205.4946

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streambcda0.27920.55840.83761.11681.396SE +/- 0.0029, N = 3SE +/- 0.0007, N = 31.24091.23811.23751.2364

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamcbda6K12K18K24K30KSE +/- 1840.16, N = 12SE +/- 279.77, N = 328968.9524888.1624331.0624242.38

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.23, N = 3SE +/- 0.18, N = 348.8448.2248.0347.97

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streambcda1224364860SE +/- 0.11, N = 3SE +/- 0.05, N = 354.5754.5654.5154.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamacbd1.08282.16563.24844.33125.414SE +/- 0.0294, N = 3SE +/- 0.0142, N = 34.81234.79054.78824.7773

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamcbda306090120150SE +/- 0.24, N = 3SE +/- 0.13, N = 3120.40120.18120.00119.91

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamabcd1.05982.11963.17944.23925.299SE +/- 0.0069, N = 3SE +/- 0.0014, N = 34.71044.70354.70024.6801

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamcbda20406080100SE +/- 0.17, N = 3SE +/- 0.17, N = 383.9383.8583.7783.66

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamcbad0.99741.99482.99223.98964.987SE +/- 0.0020, N = 3SE +/- 0.0072, N = 34.43294.43294.43254.4307

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamcbda80160240320400SE +/- 0.66, N = 3SE +/- 0.66, N = 3382.17382.12381.12381.04

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streambacd48121620SE +/- 0.03, N = 3SE +/- 0.03, N = 315.4015.3915.3815.37

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdbca816243240SE +/- 0.04, N = 3SE +/- 0.02, N = 336.9636.9336.9236.89

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streambcad48121620SE +/- 0.03, N = 3SE +/- 0.02, N = 314.6114.5814.5714.53

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streambadc150300450600750SE +/- 1.53, N = 3SE +/- 5.35, N = 3717.26715.46715.43709.26

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.04, N = 3SE +/- 0.00, N = 320.6620.6620.6420.60

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e12bacd0.26190.52380.78571.04761.3095SE +/- 0.009, N = 3SE +/- 0.008, N = 31.1641.1641.1561.1421. (CXX) g++ options: -O3

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e13cbda3691215SE +/- 0.01, N = 3SE +/- 0.02, N = 311.8711.8511.8411.791. (CXX) g++ options: -O3

54 Results Shown

SVT-AV1:
  Preset 4 - Bosphorus 4K
  Preset 8 - Bosphorus 4K
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 4K
  Preset 4 - Bosphorus 1080p
  Preset 8 - Bosphorus 1080p
  Preset 12 - Bosphorus 1080p
  Preset 13 - Bosphorus 1080p
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  Llama2 Chat 7b Quantized - Asynchronous Multi-Stream
  Llama2 Chat 7b Quantized - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream
  ResNet-50, Baseline - Asynchronous Multi-Stream
  ResNet-50, Baseline - Synchronous Single-Stream
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream
  ResNet-50, Sparse INT8 - Synchronous Single-Stream
  Llama2 Chat 7b Quantized - Asynchronous Multi-Stream
  Llama2 Chat 7b Quantized - Synchronous Single-Stream
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream
Primesieve:
  1e12
  1e13