ddfg

2 x AMD EPYC 9684X 96-Core testing with a AMD Titanite_4G (RTI1007B BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403164-NE-DDFG2505160
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 16
  36 Minutes
b
March 16
  1 Hour, 48 Minutes
c
March 16
  2 Hours, 38 Minutes
d
March 16
  36 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 25 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


ddfgOpenBenchmarking.orgPhoronix Test Suite2 x AMD EPYC 9684X 96-Core @ 2.55GHz (192 Cores / 384 Threads)AMD Titanite_4G (RTI1007B BIOS)AMD Device 14a41520GB3201GB Micron_7450_MTFDKCB3T2TFS + 257GB Flash DriveASPEEDBroadcom NetXtreme BCM5720 PCIeUbuntu 23.106.5.0-25-generic (x86_64)GCC 13.2.0ext4640x480ProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelCompilerFile-SystemScreen ResolutionDdfg BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa10113e - Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdResult OverviewPhoronix Test Suite100%101%101%102%SVT-AV1PrimesieveNeural Magic DeepSparse

ddfgsvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 1080psvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 4 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 4Kprimesieve: 1e12svt-av1: Preset 12 - Bosphorus 1080pdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamsvt-av1: Preset 4 - Bosphorus 4Kdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamprimesieve: 1e13deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamabcd149.069564.41389.277176.67422.964159.2181.164572.34920.830347.97358.5575.218191.5137206.81544.8321715.4595132.94674.8123207.673311.789212.18124.71045566.385317.2212713.544314.573468.582217421.46655.4946798.6248119.90521763.194954.35341.2364807.169948.51620.604783.657420.599148.5284381.03761144.5034249.72341762.528654.373964.890715.38992598.208336.8891132.9523225.46744.432524242.38482.9358163.175606.37691.288182.53122.898161.6531.164566.99320.805248.03378.5755.2109191.7714209.77114.7642717.2565132.79684.7882208.723511.848212.49454.70355538.980617.3043717.490014.613468.397217350.46405.5170796.5966120.17871756.174254.56601.2409804.402548.355520.672783.848220.644148.4228382.12371142.9944249.40181758.805754.486964.858615.39822595.176336.9324132.9817225.44964.432924888.15632.8607160.560588.45090.441184.13223.474162.0201.156568.20920.725948.21778.4845.1985192.2335208.74064.7875709.2588133.80614.7905208.632711.871212.63904.70025534.260417.3188715.877014.579168.556517333.35015.5224795.0277120.39761756.560454.56101.2381806.233848.517820.603783.925920.660748.3841382.17421141.2417249.09431759.956254.458864.922215.38442595.478836.9216132.8792225.44154.432928968.95362.5008163.5598.0486.593183.28522.713162.3771.142577.44420.462248.83648.6345.1383194.4729208.97674.7823715.4294132.91484.7773209.191111.841213.55554.68015554.034517.257714.45614.534868.765717400.57975.502797.7062119.99931758.305854.5051.2375806.321948.509520.607283.765720.662948.379381.12341144.0054249.77541763.424754.360964.99715.3662592.851636.9564133.012225.56144.430724331.06262.9271OpenBenchmarking.org

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 4Kdcba4080120160200SE +/- 1.52, N = 15SE +/- 1.72, N = 5163.50160.56163.18149.071. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 1080pdcba130260390520650SE +/- 6.58, N = 3SE +/- 4.06, N = 3598.04588.45606.38564.411. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 4Kdcba20406080100SE +/- 0.91, N = 3SE +/- 0.83, N = 386.5990.4491.2989.281. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 1080pdcba4080120160200SE +/- 2.01, N = 3SE +/- 0.56, N = 3183.29184.13182.53176.671. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 1080pdcba612182430SE +/- 0.24, N = 3SE +/- 0.17, N = 322.7123.4722.9022.961. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 4Kdcba4080120160200SE +/- 1.62, N = 5SE +/- 0.74, N = 3162.38162.02161.65159.221. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e12dcba0.26190.52380.78571.04761.3095SE +/- 0.008, N = 3SE +/- 0.009, N = 31.1421.1561.1641.1641. (CXX) g++ options: -O3

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 1080pdcba120240360480600SE +/- 5.33, N = 3SE +/- 3.34, N = 3577.44568.21566.99572.351. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.10, N = 3SE +/- 0.08, N = 320.4620.7320.8120.83

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.23, N = 3SE +/- 0.18, N = 348.8448.2248.0347.97

SVT-AV1

This is a benchmark of the SVT-AV1 open-source video encoder/decoder. SVT-AV1 was originally developed by Intel as part of their Open Visual Cloud / Scalable Video Technology (SVT). Development of SVT-AV1 has since moved to the Alliance for Open Media as part of upstream AV1 development. SVT-AV1 is a CPU-based multi-threaded video encoder for the AV1 video format with a sample YUV video file. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 4Kdcba246810SE +/- 0.020, N = 3SE +/- 0.017, N = 38.6348.4848.5758.5571. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdcba1.17412.34823.52234.69645.8705SE +/- 0.0167, N = 3SE +/- 0.0177, N = 35.13835.19855.21095.2180

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamdcba4080120160200SE +/- 0.62, N = 3SE +/- 0.65, N = 3194.47192.23191.77191.51

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba50100150200250SE +/- 0.35, N = 3SE +/- 0.44, N = 3208.98208.74209.77206.82

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamdcba1.08722.17443.26164.34885.436SE +/- 0.0081, N = 3SE +/- 0.0100, N = 34.78234.78754.76424.8321

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamdcba150300450600750SE +/- 5.35, N = 3SE +/- 1.53, N = 3715.43709.26717.26715.46

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamdcba306090120150SE +/- 0.72, N = 3SE +/- 0.27, N = 3132.91133.81132.80132.95

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdcba1.08282.16563.24844.33125.414SE +/- 0.0294, N = 3SE +/- 0.0142, N = 34.77734.79054.78824.8123

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamdcba50100150200250SE +/- 1.29, N = 3SE +/- 0.62, N = 3209.19208.63208.72207.67

Primesieve

Primesieve generates prime numbers using a highly optimized sieve of Eratosthenes implementation. Primesieve primarily benchmarks the CPU's L1/L2 cache performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e13dcba3691215SE +/- 0.01, N = 3SE +/- 0.02, N = 311.8411.8711.8511.791. (CXX) g++ options: -O3

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamdcba50100150200250SE +/- 0.07, N = 3SE +/- 0.31, N = 3213.56212.64212.49212.18

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamdcba1.05982.11963.17944.23925.299SE +/- 0.0014, N = 3SE +/- 0.0069, N = 34.68014.70024.70354.7104

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba12002400360048006000SE +/- 7.14, N = 3SE +/- 6.35, N = 35554.035534.265538.985566.39

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba48121620SE +/- 0.02, N = 3SE +/- 0.02, N = 317.2617.3217.3017.22

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamdcba150300450600750SE +/- 3.41, N = 3SE +/- 1.03, N = 3714.46715.88717.49713.54

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamdcba48121620SE +/- 0.02, N = 3SE +/- 0.03, N = 314.5314.5814.6114.57

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamdcba1530456075SE +/- 0.09, N = 3SE +/- 0.14, N = 368.7768.5668.4068.58

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba4K8K12K16K20KSE +/- 34.07, N = 3SE +/- 17.22, N = 317400.5817333.3517350.4617421.47

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba1.24252.4853.72754.976.2125SE +/- 0.0109, N = 3SE +/- 0.0052, N = 35.50205.52245.51705.4946

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba2004006008001000SE +/- 1.69, N = 3SE +/- 0.80, N = 3797.71795.03796.60798.62

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba306090120150SE +/- 0.24, N = 3SE +/- 0.13, N = 3120.00120.40120.18119.91

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdcba400800120016002000SE +/- 1.97, N = 3SE +/- 3.28, N = 31758.311756.561756.171763.19

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamdcba1224364860SE +/- 0.05, N = 3SE +/- 0.11, N = 354.5154.5654.5754.35

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamdcba0.27920.55840.83761.11681.396SE +/- 0.0007, N = 3SE +/- 0.0029, N = 31.23751.23811.24091.2364

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamdcba2004006008001000SE +/- 0.46, N = 3SE +/- 1.84, N = 3806.32806.23804.40807.17

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.04, N = 3SE +/- 0.03, N = 348.5148.5248.3648.52

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.02, N = 3SE +/- 0.01, N = 320.6120.6020.6720.60

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamdcba20406080100SE +/- 0.17, N = 3SE +/- 0.17, N = 383.7783.9383.8583.66

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba510152025SE +/- 0.04, N = 3SE +/- 0.00, N = 320.6620.6620.6420.60

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamdcba1122334455SE +/- 0.09, N = 3SE +/- 0.01, N = 348.3848.3848.4248.53

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamdcba80160240320400SE +/- 0.66, N = 3SE +/- 0.66, N = 3381.12382.17382.12381.04

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamdcba2004006008001000SE +/- 2.42, N = 3SE +/- 2.26, N = 31144.011141.241142.991144.50

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamdcba50100150200250SE +/- 0.26, N = 3SE +/- 0.46, N = 3249.78249.09249.40249.72

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamdcba400800120016002000SE +/- 2.77, N = 3SE +/- 2.58, N = 31763.421759.961758.811762.53

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamdcba1224364860SE +/- 0.08, N = 3SE +/- 0.09, N = 354.3654.4654.4954.37

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamdcba1530456075SE +/- 0.15, N = 3SE +/- 0.12, N = 365.0064.9264.8664.89

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamdcba48121620SE +/- 0.03, N = 3SE +/- 0.03, N = 315.3715.3815.4015.39

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba6001200180024003000SE +/- 1.45, N = 3SE +/- 2.93, N = 32592.852595.482595.182598.21

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamdcba816243240SE +/- 0.02, N = 3SE +/- 0.04, N = 336.9636.9236.9336.89

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamdcba306090120150SE +/- 0.23, N = 3SE +/- 0.21, N = 3133.01132.88132.98132.95

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamdcba50100150200250SE +/- 0.10, N = 3SE +/- 0.36, N = 3225.56225.44225.45225.47

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamdcba0.99741.99482.99223.98964.987SE +/- 0.0020, N = 3SE +/- 0.0072, N = 34.43074.43294.43294.4325

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamdcba6K12K18K24K30KSE +/- 1840.16, N = 12SE +/- 279.77, N = 324331.0628968.9524888.1624242.38

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamdcba0.66061.32121.98182.64243.303SE +/- 0.1622, N = 12SE +/- 0.0343, N = 32.92712.50082.86072.9358

54 Results Shown

SVT-AV1:
  Preset 12 - Bosphorus 4K
  Preset 13 - Bosphorus 1080p
  Preset 8 - Bosphorus 4K
  Preset 8 - Bosphorus 1080p
  Preset 4 - Bosphorus 1080p
  Preset 13 - Bosphorus 4K
Primesieve
SVT-AV1
Neural Magic DeepSparse:
  Llama2 Chat 7b Quantized - Synchronous Single-Stream:
    items/sec
    ms/batch
SVT-AV1
Neural Magic DeepSparse:
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Baseline - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    ms/batch
    items/sec
Primesieve
Neural Magic DeepSparse:
  CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
  BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  ResNet-50, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  ResNet-50, Sparse INT8 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    ms/batch
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    items/sec
  ResNet-50, Baseline - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    items/sec
    ms/batch
  BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    items/sec
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    items/sec
    ms/batch
  Llama2 Chat 7b Quantized - Asynchronous Multi-Stream:
    ms/batch
    items/sec