new amp

ARMv8 Neoverse-N1 testing with a GIGABYTE G242-P36-00 MP32-AR2-00 v01000100 (F31k SCP: 2.10.20220531 BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2402068-NE-NEWAMP18865
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

HPC - High Performance Computing 2 Tests
Machine Learning 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
February 06
  52 Minutes
b
February 06
  53 Minutes
c
February 06
  51 Minutes
Invert Hiding All Results Option
  52 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


new ampOpenBenchmarking.orgPhoronix Test SuiteARMv8 Neoverse-N1 @ 3.00GHz (128 Cores)GIGABYTE G242-P36-00 MP32-AR2-00 v01000100 (F31k SCPAmpere Computing LLC Altra PCI Root Complex A16 x 32GB DDR4-3200MT/s Samsung M393A4K40DB3-CWE800GB Micron_7450_MTFDKBA800TFSASPEEDVGA HDMI2 x Intel I350Ubuntu 23.106.5.0-13-generic (aarch64)GCC 13.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsMonitorNetworkOSKernelCompilerFile-SystemScreen ResolutionNew Amp BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v - Scaling Governor: cppc_cpufreq performance (Boost: Disabled)- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 BHB + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%102%103%105%107%LlamafileONNX RuntimeLZ4 Compression

new ampllamafile: mistral-7b-instruct-v0.2.Q8_0 - CPUllamafile: llava-v1.5-7b-q4 - CPUonnx: bertsquad-12 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardllamafile: wizardcoder-python-34b-v1.0.Q6_K - CPUonnx: T5 Encoder - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: yolov4 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelcompress-lz4: 1 - Decompression Speedonnx: bertsquad-12 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardonnx: GPT-2 - CPU - Parallelonnx: T5 Encoder - CPU - Parallelonnx: yolov4 - CPU - Standardcompress-lz4: 9 - Compression Speedcompress-lz4: 1 - Compression Speedonnx: ArcFace ResNet-100 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelcompress-lz4: 3 - Decompression Speedcompress-lz4: 3 - Compression Speedcompress-lz4: 9 - Decompression Speedonnx: super-resolution-10 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Parallelabc3.153.3110.92771.2041411.00251.78258.6371.125386.09066576.593170.12125.3641178.736131.4882815.222.1724701.371154.293250.5567.1377727.59519.839.8126175.714224.85992492.280.972511.879.494439.420640.222612.57613.20625.875337.6035790.885101.907830.466888.5841.423431.7324845.096591.50673.862273.98962140.095164.1815.585256.472352.893.0211.75451.2444410.74841.74258.8551.147586.16283566.725167.73625.0685176.5231322827.722.0769698.343154.899251.2527.1137727.68520.419.8294375.667224.83982493.180.95251179.516639.885540.255212.572313.21445.958237.5739293.0332101.733803.571871.3951.429551.7628245.291185.06993.85923.97869140.568162.265.655116.446972.833.3111.10911.2587210.98541.77253.5971.131226.20055576.227170.63225.4554177.439130.7052841.821.9998700.482154.703251.4577.1255627.64521.159.8099175.640124.86122491.680.99251279.485139.278940.220212.577413.21915.857067.6492991.0258101.936794.4568841.425321.7335645.449990.01293.939183.9752140.335161.2725.625856.45507OpenBenchmarking.org

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPUabc0.70881.41762.12642.83523.5443.152.892.83

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: llava-v1.5-7b-q4 - Acceleration: CPUabc0.74481.48962.23442.97923.7243.313.023.31

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelabc369121510.9311.7511.111. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardabc0.28320.56640.84961.13281.4161.204141.244441.258721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardabc369121511.0010.7510.991. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

Llamafile

Mozilla's Llamafile allows distributing and running large language models (LLMs) as a single file. Llamafile aims to make open-source LLMs more accessible to developers and users. Llamafile supports a variety of models, CPUs and GPUs, and other options. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPUabc0.40050.8011.20151.6022.00251.781.741.77

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardabc60120180240300258.64258.86253.601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelabc0.25820.51640.77461.03281.2911.125381.147581.131221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelabc2468106.090666.162836.200551. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelabc120240360480600576.59566.73576.231. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardabc4080120160200170.12167.74170.631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardabc61218243025.3625.0725.461. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardabc4080120160200178.74176.52177.441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelabc306090120150131.49132.00130.711. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Decompression Speedabc60012001800240030002815.22827.72841.81. (CC) gcc options: -O3

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardabc51015202522.1722.0822.001. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardabc150300450600750701.37698.34700.481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelabc306090120150154.29154.90154.701. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelabc50100150200250250.56251.25251.461. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardabc2468107.137777.113777.125561. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Compression Speedabc71421283527.5927.6827.641. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Compression Speedabc110220330440550519.83520.41521.151. (CC) gcc options: -O3

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelabc36912159.812619.829439.809911. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelabc2040608010075.7175.6775.641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelabc61218243024.8624.8424.861. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

LZ4 Compression

This test measures the time needed to compress/decompress a sample file (silesia archive) using LZ4 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Decompression Speedabc50010001500200025002492.22493.12491.61. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Compression Speedabc2040608010080.9780.9580.991. (CC) gcc options: -O3

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Decompression Speedabc50010001500200025002511.82511.02512.01. (CC) gcc options: -O3

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardabc2040608010079.4979.5279.491. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt