onnx new

AMD Ryzen Threadripper 3990X 64-Core testing with a Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS) and AMD Radeon RX 5700 8GB on Pop 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2402035-NE-ONNXNEW6040
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
February 03
  41 Minutes
b
February 03
  2 Hours, 9 Minutes
c
February 03
  2 Hours, 40 Minutes
d
February 03
  2 Hours, 16 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 56 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


onnx newOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper 3990X 64-Core @ 2.90GHz (64 Cores / 128 Threads)Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS)AMD Starship/Matisse4 x 32GB DDR4-3000MT/s CMK64GX4M2D3000C16Samsung SSD 970 EVO Plus 500GBAMD Radeon RX 5700 8GB (1750/875MHz)AMD Navi 10 HDMI AudioDELL P2415QIntel I211 + Intel Wi-Fi 6 AX200Pop 22.046.6.6-76060606-generic (x86_64)GNOME Shell 42.5X Server 1.21.1.44.6 Mesa 23.3.2-1pop0~1704238321~22.04~36f1d0e (LLVM 15.0.7 DRM 3.54)1.3.267GCC 11.4.0ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionOnnx New BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x830107a- Python 3.10.12- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdResult OverviewPhoronix Test Suite100%109%119%128%138%ONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeONNX RuntimeT5 Encoder - CPU - StandardT5 Encoder - CPU - ParallelGPT-2 - CPU - ParallelGPT-2 - CPU - StandardCaffeNet 12-int8 - CPU - Standardyolov4 - CPU - ParallelF.R.C.R.5.F.i - CPU - StandardArcFace ResNet-100 - CPU - Parallelbertsquad-12 - CPU - Parallelyolov4 - CPU - Standardfcn-resnet101-11 - CPU - StandardF.R.C.R.5.F.i - CPU - Parallelbertsquad-12 - CPU - StandardCaffeNet 12-int8 - CPU - ParallelR.v.1.i - CPU - StandardR.v.1.i - CPU - Parallelfcn-resnet101-11 - CPU - Parallelsuper-resolution-10 - CPU - StandardArcFace ResNet-100 - CPU - Standardsuper-resolution-10 - CPU - ParallelCaffeNet 12-int8 - CPU - ParallelF.R.C.R.5.F.i - CPU - Standardbertsquad-12 - CPU - ParallelCaffeNet 12-int8 - CPU - StandardF.R.C.R.5.F.i - CPU - Parallelfcn-resnet101-11 - CPU - ParallelGPT-2 - CPU - ParallelGPT-2 - CPU - Standardyolov4 - CPU - Parallelfcn-resnet101-11 - CPU - Standardyolov4 - CPU - Standardbertsquad-12 - CPU - StandardArcFace ResNet-100 - CPU - ParallelT5 Encoder - CPU - ParallelArcFace ResNet-100 - CPU - StandardT5 Encoder - CPU - StandardR.v.1.i - CPU - ParallelR.v.1.i - CPU - Standardsuper-resolution-10 - CPU - Parallelsuper-resolution-10 - CPU - Standard

onnx newonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: yolov4 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: T5 Encoder - CPU - Parallelonnx: T5 Encoder - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardabcd5.0096199.46240.324124.796218.9884.566343.81235262.06546.755921.38521266.70.7894459.36878106.62611.758984.988292.5553.41805335.4132.98135166.9685.98899115.0288.69295133.7827.47456.2888158.94364.31315.54799.84382101.55320.729148.22638.38855119.15211.855984.325411.159989.59315.11408195.47939.097925.5728225.9564.425564.31444231.65447.586021.01241253.220.79815010.973991.038313.365474.7827302.6453.30419342.7982.91718170.3535.87005115.7718.63703136.6587.318597.56668132.11464.754315.441511.544886.589820.951547.71988.46928118.03711.864184.268611.269288.73645.06250197.53138.655225.8677227.6364.395224.46068223.99347.914720.86841267.890.78871312.260281.497015.335865.1860302.8243.30267342.9532.91581171.5495.82904116.4848.58440138.6647.211438.34118119.84764.877215.412813.138976.092421.007547.59118.54047117.04811.931083.796111.234189.00295.02241198.96539.320825.4426226.8204.408924.41593226.28047.950220.85341257.910.79527912.548479.628415.678363.7474307.3393.25386344.3902.90364172.0835.81121117.8518.48632139.5127.167658.62179115.97164.820815.426313.533673.874520.776548.12048.50747117.50411.894684.051311.243788.9273OpenBenchmarking.org

ONNX Runtime

ONNX Runtime is developed by Microsoft and partners as a open-source, cross-platform, high performance machine learning inferencing and training accelerator. This test profile runs the ONNX Runtime with various models available from the ONNX Model Zoo. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Paralleladcb1.15072.30143.45214.60285.7535SE +/- 0.01436, N = 3SE +/- 0.03696, N = 15SE +/- 0.05402, N = 55.009605.022415.062505.114081. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Paralleladcb4080120160200SE +/- 0.56, N = 3SE +/- 1.45, N = 15SE +/- 2.06, N = 5199.46198.97197.53195.481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardcbda918273645SE +/- 0.20, N = 3SE +/- 0.19, N = 3SE +/- 0.34, N = 938.6639.1039.3240.321. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardcbda612182430SE +/- 0.13, N = 3SE +/- 0.13, N = 3SE +/- 0.21, N = 925.8725.5725.4424.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelabdc50100150200250SE +/- 0.51, N = 3SE +/- 1.30, N = 3SE +/- 1.88, N = 9218.99225.96226.82227.641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelabdc1.02742.05483.08224.10965.137SE +/- 0.01003, N = 3SE +/- 0.02513, N = 3SE +/- 0.03613, N = 94.566344.425564.408924.395221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardabdc1.00372.00743.01114.01485.0185SE +/- 0.04592, N = 4SE +/- 0.01606, N = 3SE +/- 0.00933, N = 33.812354.314444.415934.460681. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardabdc60120180240300SE +/- 2.43, N = 4SE +/- 0.82, N = 3SE +/- 0.47, N = 3262.07231.65226.28223.991. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelabcd1122334455SE +/- 0.06, N = 3SE +/- 0.12, N = 3SE +/- 0.20, N = 346.7647.5947.9147.951. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelabcd510152025SE +/- 0.02, N = 3SE +/- 0.05, N = 3SE +/- 0.08, N = 321.3921.0120.8720.851. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelbdac30060090012001500SE +/- 14.56, N = 3SE +/- 17.69, N = 3SE +/- 2.19, N = 31253.221257.911266.701267.891. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelbdac0.17960.35920.53880.71840.898SE +/- 0.009251, N = 3SE +/- 0.011220, N = 3SE +/- 0.001362, N = 30.7981500.7952790.7894450.7887131. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelabcd3691215SE +/- 0.03121, N = 3SE +/- 0.02097, N = 3SE +/- 0.03777, N = 39.3687810.9739012.2602012.548401. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelabcd20406080100SE +/- 0.26, N = 3SE +/- 0.14, N = 3SE +/- 0.24, N = 3106.6391.0481.5079.631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardabcd48121620SE +/- 0.11, N = 3SE +/- 0.17, N = 3SE +/- 0.05, N = 311.7613.3715.3415.681. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardabcd20406080100SE +/- 0.62, N = 3SE +/- 0.72, N = 3SE +/- 0.21, N = 384.9974.7865.1963.751. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelabcd70140210280350SE +/- 1.22, N = 3SE +/- 2.72, N = 3SE +/- 1.84, N = 3292.56302.65302.82307.341. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelabcd0.76911.53822.30733.07643.8455SE +/- 0.01341, N = 3SE +/- 0.02977, N = 3SE +/- 0.01952, N = 33.418053.304193.302673.253861. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardabcd70140210280350SE +/- 1.06, N = 3SE +/- 0.21, N = 3SE +/- 0.50, N = 3335.41342.80342.95344.391. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardabcd0.67081.34162.01242.68323.354SE +/- 0.00899, N = 3SE +/- 0.00183, N = 3SE +/- 0.00422, N = 32.981352.917182.915812.903641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardabcd4080120160200SE +/- 0.41, N = 3SE +/- 0.12, N = 3SE +/- 0.80, N = 3166.97170.35171.55172.081. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardabcd1.34752.6954.04255.396.7375SE +/- 0.01409, N = 3SE +/- 0.00419, N = 3SE +/- 0.02691, N = 35.988995.870055.829045.811211. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardabcd306090120150SE +/- 0.17, N = 3SE +/- 0.20, N = 3SE +/- 1.11, N = 3115.03115.77116.48117.851. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardabcd246810SE +/- 0.01301, N = 3SE +/- 0.01460, N = 3SE +/- 0.07957, N = 38.692958.637038.584408.486321. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelabcd306090120150SE +/- 1.33, N = 3SE +/- 0.38, N = 3SE +/- 0.50, N = 3133.78136.66138.66139.511. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelabcd246810SE +/- 0.07142, N = 3SE +/- 0.01975, N = 3SE +/- 0.02570, N = 37.474507.318597.211437.167651. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelabcd246810SE +/- 0.04827, N = 3SE +/- 0.00537, N = 3SE +/- 0.09288, N = 36.288807.566688.341188.621791. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelabcd4080120160200SE +/- 0.84, N = 3SE +/- 0.08, N = 3SE +/- 1.26, N = 3158.94132.11119.85115.971. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardabdc1428425670SE +/- 0.09, N = 3SE +/- 0.19, N = 3SE +/- 0.12, N = 364.3164.7564.8264.881. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardabdc48121620SE +/- 0.02, N = 3SE +/- 0.05, N = 3SE +/- 0.03, N = 315.5515.4415.4315.411. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardabcd3691215SE +/- 0.00918, N = 3SE +/- 0.03970, N = 3SE +/- 0.07065, N = 39.8438211.5448013.1389013.533601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardabcd20406080100SE +/- 0.07, N = 3SE +/- 0.23, N = 3SE +/- 0.39, N = 3101.5586.5976.0973.871. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Paralleladbc510152025SE +/- 0.04, N = 3SE +/- 0.11, N = 3SE +/- 0.09, N = 320.7320.7820.9521.011. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Paralleladbc1122334455SE +/- 0.10, N = 3SE +/- 0.26, N = 3SE +/- 0.21, N = 348.2348.1247.7247.591. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardabdc246810SE +/- 0.05653, N = 3SE +/- 0.03634, N = 3SE +/- 0.02479, N = 38.388558.469288.507478.540471. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardabdc306090120150SE +/- 0.78, N = 3SE +/- 0.50, N = 3SE +/- 0.34, N = 3119.15118.04117.50117.051. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelabdc3691215SE +/- 0.03, N = 3SE +/- 0.02, N = 3SE +/- 0.00, N = 311.8611.8611.8911.931. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelabdc20406080100SE +/- 0.23, N = 3SE +/- 0.11, N = 3SE +/- 0.03, N = 384.3384.2784.0583.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardacdb3691215SE +/- 0.04, N = 3SE +/- 0.04, N = 3SE +/- 0.10, N = 311.1611.2311.2411.271. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardacdb20406080100SE +/- 0.28, N = 3SE +/- 0.31, N = 3SE +/- 0.77, N = 389.5989.0088.9388.741. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

40 Results Shown

ONNX Runtime:
  CaffeNet 12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  Faster R-CNN R-50-FPN-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  CaffeNet 12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  Faster R-CNN R-50-FPN-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  fcn-resnet101-11 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  GPT-2 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  yolov4 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  fcn-resnet101-11 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  yolov4 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  bertsquad-12 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  T5 Encoder - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ArcFace ResNet-100 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  T5 Encoder - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  ResNet50 v1-12-int8 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Parallel:
    Inference Time Cost (ms)
    Inferences Per Second
  super-resolution-10 - CPU - Standard:
    Inference Time Cost (ms)
    Inferences Per Second