ddf Tests for a future article. AMD EPYC 8534PN 64-Core testing with a AMD Cinnabar (RCB1009C BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2401089-NE-DDF54911740&rdt&grt .
ddf Processor Motherboard Chipset Memory Disk Graphics Network OS Kernel Desktop Display Server Compiler File-System Screen Resolution a b AMD EPYC 8534PN 64-Core @ 2.00GHz (64 Cores / 128 Threads) AMD Cinnabar (RCB1009C BIOS) AMD Device 14a4 192GB 3201GB Micron_7450_MTFDKCB3T2TFS ASPEED 2 x Broadcom NetXtreme BCM5720 PCIe Ubuntu 23.10 6.5.0-5-generic (x86_64) GNOME Shell X Server 1.21.1.7 GCC 13.2.0 ext4 640x480 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-FTCNCZ/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-FTCNCZ/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xaa00212 Python Details - Python 3.11.5 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
ddf blender: BMW27 - CPU-Only blender: Classroom - CPU-Only blender: Fishy Cat - CPU-Only blender: Barbershop - CPU-Only blender: Pabellon Barcelona - CPU-Only cloverleaf: clover_bm cloverleaf: clover_bm64_short easywave: e2Asean Grid + BengkuluSept2007 Source - 240 easywave: e2Asean Grid + BengkuluSept2007 Source - 1200 easywave: e2Asean Grid + BengkuluSept2007 Source - 2400 embree: Pathtracer - Crown embree: Pathtracer ISPC - Crown embree: Pathtracer - Asian Dragon embree: Pathtracer - Asian Dragon Obj embree: Pathtracer ISPC - Asian Dragon embree: Pathtracer ISPC - Asian Dragon Obj ffmpeg: libx265 - Live ffmpeg: libx265 - Upload ffmpeg: libx265 - Platform ffmpeg: libx265 - Video On Demand lczero: BLAS lczero: Eigen deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream openradioss: Bumper Beam openradioss: Chrysler Neon 1M openradioss: Cell Phone Drop Test openradioss: Bird Strike on Windshield openradioss: Rubber O-Ring Seal Installation openradioss: INIVOL and Fluid Structure Interaction Drop Container pytorch: CPU - 1 - ResNet-50 pytorch: CPU - 1 - ResNet-152 pytorch: CPU - 16 - ResNet-50 pytorch: CPU - 32 - ResNet-50 pytorch: CPU - 64 - ResNet-50 pytorch: CPU - 16 - ResNet-152 pytorch: CPU - 32 - ResNet-152 pytorch: CPU - 64 - ResNet-152 pytorch: CPU - 1 - Efficientnet_v2_l pytorch: CPU - 16 - Efficientnet_v2_l pytorch: CPU - 32 - Efficientnet_v2_l pytorch: CPU - 64 - Efficientnet_v2_l quantlib: Multi-Threaded quantlib: Single-Threaded quicksilver: CTS2 quicksilver: CORAL2 P1 quicksilver: CORAL2 P2 rav1e: 1 rav1e: 5 rav1e: 6 rav1e: 10 speedb: Rand Fill speedb: Rand Read speedb: Update Rand speedb: Seq Fill speedb: Rand Fill Sync speedb: Read While Writing speedb: Read Rand Write Rand svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p tensorflow: CPU - 1 - VGG-16 tensorflow: CPU - 1 - AlexNet tensorflow: CPU - 16 - VGG-16 tensorflow: CPU - 16 - AlexNet tensorflow: CPU - 1 - GoogLeNet tensorflow: CPU - 1 - ResNet-50 tensorflow: CPU - 16 - GoogLeNet tensorflow: CPU - 16 - ResNet-50 build-ffmpeg: Time To Compile build-gem5: Time To Compile webp2: Default webp2: Quality 75, Compression Effort 7 webp2: Quality 95, Compression Effort 7 webp2: Quality 100, Compression Effort 5 webp2: Quality 100, Lossless Compression xmrig: KawPow - 1M xmrig: Monero - 1M xmrig: Wownero - 1M xmrig: GhostRider - 1M xmrig: CryptoNight-Heavy - 1M xmrig: CryptoNight-Femto UPX2 - 1M y-cruncher: 1B y-cruncher: 5B y-cruncher: 10B y-cruncher: 500M a b 26.71 67.06 35.54 239.83 86.14 13.67 57.21 1.947 39.643 111.038 67.9313 69.2031 77.2581 69.0867 83.8771 71.4939 114.74 23.20 47.15 47.03 315 272 36.8118 852.1762 27.5732 36.2588 1458.049 21.9243 195.6 5.1074 486.6043 65.6643 185.3007 5.3901 3813.6379 8.3709 800.5916 1.2456 220.0706 145.021 145.6232 6.8554 46.9635 673.3343 30.3213 32.9699 485.9989 65.6917 185.9864 5.3704 222.2492 143.5315 147.2472 6.7843 323.0662 98.8186 130.9206 7.6305 64.0666 496.3373 41.0087 24.3612 698.3574 45.7574 63.2873 15.7849 37.088 854.1221 27.5048 36.3487 88.11 297.08 31.94 143.85 76.78 164.67 45.19 16.54 36.12 36.66 36.87 14.70 14.37 14.89 9.53 6.00 6.06 6.03 176928.1 2634.4 16240000 21350000 16170000 0.85 3.584 4.851 12.32 369023 303866048 350612 371857 239469 15411684 2539184 6.628 67.98 190.949 187.077 17.075 131.9 511.853 597.058 9.87 30.46 35.21 299.15 17 5.97 155.77 51.06 18.145 211.562 7.44 0.54 0.27 11.63 0.06 20682.1 20714.7 40330.7 4436.2 20666.7 20698.4 10.245 53.068 112.543 5.11 26.75 67.51 35.33 240.12 86.16 13.93 57.09 1.958 39.484 111.072 67.1138 68.5827 77.103 68.5948 83.5831 71.4428 115.73 23.29 47.07 47.05 354 282 37.0225 853.3085 27.5404 36.3016 1454.9899 21.9623 191.4824 5.217 485.7323 65.7823 186.2351 5.3631 3800.6772 8.399 799.9581 1.2465 220.1545 144.9123 145.1485 6.8775 46.8626 674.9861 30.1617 33.1445 485.8785 65.7405 184.5078 5.4136 221.7174 143.8442 147.1485 6.7891 322.9189 98.8586 131.4576 7.5994 63.9058 497.6216 40.9888 24.3739 695.3481 45.9477 63.3431 15.77 37.16 853.694 27.5295 36.316 88.16 295.72 31.84 142.38 76.1 163.46 45.42 16.58 36.35 36.38 36.29 14.18 14.13 14.61 9.61 5.98 6.08 6.03 170381.3 2633.8 16310000 21280000 16190000 0.85 3.596 4.891 12.36 367684 304143127 361192 369178 244535 15231425 2539687 6.75 68.523 194.49 194.587 17.467 129.181 503.618 601.573 9.87 30.45 35.14 297.84 17 5.97 155.78 50.8 18.042 223.062 7.49 0.51 0.26 11.68 0.06 20732.7 20732.3 40146.1 4442.9 20071.9 20683 10.202 53.146 112.813 5.106 OpenBenchmarking.org
Blender Blend File: BMW27 - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.0 Blend File: BMW27 - Compute: CPU-Only a b 6 12 18 24 30 26.71 26.75
Blender Blend File: Classroom - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.0 Blend File: Classroom - Compute: CPU-Only a b 15 30 45 60 75 67.06 67.51
Blender Blend File: Fishy Cat - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.0 Blend File: Fishy Cat - Compute: CPU-Only a b 8 16 24 32 40 35.54 35.33
Blender Blend File: Barbershop - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.0 Blend File: Barbershop - Compute: CPU-Only a b 50 100 150 200 250 239.83 240.12
Blender Blend File: Pabellon Barcelona - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.0 Blend File: Pabellon Barcelona - Compute: CPU-Only a b 20 40 60 80 100 86.14 86.16
CloverLeaf Input: clover_bm OpenBenchmarking.org Seconds, Fewer Is Better CloverLeaf 1.3 Input: clover_bm a b 4 8 12 16 20 13.67 13.93 1. (F9X) gfortran options: -O3 -march=native -funroll-loops -fopenmp
CloverLeaf Input: clover_bm64_short OpenBenchmarking.org Seconds, Fewer Is Better CloverLeaf 1.3 Input: clover_bm64_short a b 13 26 39 52 65 57.21 57.09 1. (F9X) gfortran options: -O3 -march=native -funroll-loops -fopenmp
easyWave Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240 OpenBenchmarking.org Seconds, Fewer Is Better easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240 a b 0.4406 0.8812 1.3218 1.7624 2.203 1.947 1.958 1. (CXX) g++ options: -O3 -fopenmp
easyWave Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200 OpenBenchmarking.org Seconds, Fewer Is Better easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200 a b 9 18 27 36 45 39.64 39.48 1. (CXX) g++ options: -O3 -fopenmp
easyWave Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400 OpenBenchmarking.org Seconds, Fewer Is Better easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400 a b 20 40 60 80 100 111.04 111.07 1. (CXX) g++ options: -O3 -fopenmp
Embree Binary: Pathtracer - Model: Crown OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer - Model: Crown a b 15 30 45 60 75 67.93 67.11 MIN: 66.43 / MAX: 69.87 MIN: 65.7 / MAX: 68.8
Embree Binary: Pathtracer ISPC - Model: Crown OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer ISPC - Model: Crown a b 15 30 45 60 75 69.20 68.58 MIN: 67.75 / MAX: 70.94 MIN: 67.24 / MAX: 70.49
Embree Binary: Pathtracer - Model: Asian Dragon OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer - Model: Asian Dragon a b 20 40 60 80 100 77.26 77.10 MIN: 76.76 / MAX: 78.27 MIN: 76.54 / MAX: 78.04
Embree Binary: Pathtracer - Model: Asian Dragon Obj OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer - Model: Asian Dragon Obj a b 15 30 45 60 75 69.09 68.59 MIN: 68.49 / MAX: 70.1 MIN: 67.96 / MAX: 69.51
Embree Binary: Pathtracer ISPC - Model: Asian Dragon OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer ISPC - Model: Asian Dragon a b 20 40 60 80 100 83.88 83.58 MIN: 83.23 / MAX: 85.03 MIN: 82.9 / MAX: 84.61
Embree Binary: Pathtracer ISPC - Model: Asian Dragon Obj OpenBenchmarking.org Frames Per Second, More Is Better Embree 4.3 Binary: Pathtracer ISPC - Model: Asian Dragon Obj a b 16 32 48 64 80 71.49 71.44 MIN: 70.94 / MAX: 72.42 MIN: 70.79 / MAX: 72.51
FFmpeg Encoder: libx265 - Scenario: Live OpenBenchmarking.org FPS, More Is Better FFmpeg 6.1 Encoder: libx265 - Scenario: Live a b 30 60 90 120 150 114.74 115.73 1. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma
FFmpeg Encoder: libx265 - Scenario: Upload OpenBenchmarking.org FPS, More Is Better FFmpeg 6.1 Encoder: libx265 - Scenario: Upload a b 6 12 18 24 30 23.20 23.29 1. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma
FFmpeg Encoder: libx265 - Scenario: Platform OpenBenchmarking.org FPS, More Is Better FFmpeg 6.1 Encoder: libx265 - Scenario: Platform a b 11 22 33 44 55 47.15 47.07 1. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma
FFmpeg Encoder: libx265 - Scenario: Video On Demand OpenBenchmarking.org FPS, More Is Better FFmpeg 6.1 Encoder: libx265 - Scenario: Video On Demand a b 11 22 33 44 55 47.03 47.05 1. (CXX) g++ options: -O3 -rdynamic -lpthread -lrt -ldl -lnuma
LeelaChessZero Backend: BLAS OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: BLAS a b 80 160 240 320 400 315 354 1. (CXX) g++ options: -flto -pthread
LeelaChessZero Backend: Eigen OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: Eigen a b 60 120 180 240 300 272 282 1. (CXX) g++ options: -flto -pthread
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b 9 18 27 36 45 36.81 37.02
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b 200 400 600 800 1000 852.18 853.31
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b 6 12 18 24 30 27.57 27.54
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b 8 16 24 32 40 36.26 36.30
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 300 600 900 1200 1500 1458.05 1454.99
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 5 10 15 20 25 21.92 21.96
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b 40 80 120 160 200 195.60 191.48
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b 1.1738 2.3476 3.5214 4.6952 5.869 5.1074 5.2170
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b 110 220 330 440 550 486.60 485.73
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b 15 30 45 60 75 65.66 65.78
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b 40 80 120 160 200 185.30 186.24
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b 1.2128 2.4256 3.6384 4.8512 6.064 5.3901 5.3631
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 800 1600 2400 3200 4000 3813.64 3800.68
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 2 4 6 8 10 8.3709 8.3990
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b 200 400 600 800 1000 800.59 799.96
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b 0.2805 0.561 0.8415 1.122 1.4025 1.2456 1.2465
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b 50 100 150 200 250 220.07 220.15
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b 30 60 90 120 150 145.02 144.91
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream a b 30 60 90 120 150 145.62 145.15
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream a b 2 4 6 8 10 6.8554 6.8775
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b 11 22 33 44 55 46.96 46.86
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b 150 300 450 600 750 673.33 674.99
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream a b 7 14 21 28 35 30.32 30.16
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream a b 8 16 24 32 40 32.97 33.14
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b 110 220 330 440 550 486.00 485.88
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b 15 30 45 60 75 65.69 65.74
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b 40 80 120 160 200 185.99 184.51
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b 1.2181 2.4362 3.6543 4.8724 6.0905 5.3704 5.4136
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 50 100 150 200 250 222.25 221.72
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 30 60 90 120 150 143.53 143.84
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b 30 60 90 120 150 147.25 147.15
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b 2 4 6 8 10 6.7843 6.7891
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b 70 140 210 280 350 323.07 322.92
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b 20 40 60 80 100 98.82 98.86
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b 30 60 90 120 150 130.92 131.46
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b 2 4 6 8 10 7.6305 7.5994
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b 14 28 42 56 70 64.07 63.91
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b 110 220 330 440 550 496.34 497.62
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b 9 18 27 36 45 41.01 40.99
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b 6 12 18 24 30 24.36 24.37
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 150 300 450 600 750 698.36 695.35
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 10 20 30 40 50 45.76 45.95
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b 14 28 42 56 70 63.29 63.34
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b 4 8 12 16 20 15.78 15.77
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b 9 18 27 36 45 37.09 37.16
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b 200 400 600 800 1000 854.12 853.69
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b 6 12 18 24 30 27.50 27.53
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b 8 16 24 32 40 36.35 36.32
OpenRadioss Model: Bumper Beam OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: Bumper Beam a b 20 40 60 80 100 88.11 88.16
OpenRadioss Model: Chrysler Neon 1M OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: Chrysler Neon 1M a b 60 120 180 240 300 297.08 295.72
OpenRadioss Model: Cell Phone Drop Test OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: Cell Phone Drop Test a b 7 14 21 28 35 31.94 31.84
OpenRadioss Model: Bird Strike on Windshield OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: Bird Strike on Windshield a b 30 60 90 120 150 143.85 142.38
OpenRadioss Model: Rubber O-Ring Seal Installation OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: Rubber O-Ring Seal Installation a b 20 40 60 80 100 76.78 76.10
OpenRadioss Model: INIVOL and Fluid Structure Interaction Drop Container OpenBenchmarking.org Seconds, Fewer Is Better OpenRadioss 2023.09.15 Model: INIVOL and Fluid Structure Interaction Drop Container a b 40 80 120 160 200 164.67 163.46
PyTorch Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b 10 20 30 40 50 45.19 45.42 MIN: 43.72 / MAX: 45.91 MIN: 44.29 / MAX: 45.97
PyTorch Device: CPU - Batch Size: 1 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 1 - Model: ResNet-152 a b 4 8 12 16 20 16.54 16.58 MIN: 16.37 / MAX: 16.68 MIN: 16.43 / MAX: 16.69
PyTorch Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b 8 16 24 32 40 36.12 36.35 MIN: 35.2 / MAX: 36.51 MIN: 35.07 / MAX: 36.8
PyTorch Device: CPU - Batch Size: 32 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 a b 8 16 24 32 40 36.66 36.38 MIN: 29.64 / MAX: 37.04 MIN: 30.16 / MAX: 36.75
PyTorch Device: CPU - Batch Size: 64 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 a b 8 16 24 32 40 36.87 36.29 MIN: 35.7 / MAX: 37.3 MIN: 35.06 / MAX: 36.7
PyTorch Device: CPU - Batch Size: 16 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 a b 4 8 12 16 20 14.70 14.18 MIN: 14.51 / MAX: 14.85 MIN: 14.06 / MAX: 14.27
PyTorch Device: CPU - Batch Size: 32 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 32 - Model: ResNet-152 a b 4 8 12 16 20 14.37 14.13 MIN: 13.3 / MAX: 14.46 MIN: 12.97 / MAX: 14.21
PyTorch Device: CPU - Batch Size: 64 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 64 - Model: ResNet-152 a b 4 8 12 16 20 14.89 14.61 MIN: 13.43 / MAX: 14.98 MIN: 13.45 / MAX: 14.71
PyTorch Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l a b 3 6 9 12 15 9.53 9.61 MIN: 9.35 / MAX: 9.64 MIN: 9.52 / MAX: 9.7
PyTorch Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.00 5.98 MIN: 5.47 / MAX: 6.12 MIN: 5.52 / MAX: 6.11
PyTorch Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.06 6.08 MIN: 5.71 / MAX: 6.17 MIN: 5.69 / MAX: 6.19
PyTorch Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.03 6.03 MIN: 5.52 / MAX: 6.16 MIN: 5.51 / MAX: 6.13
QuantLib Configuration: Multi-Threaded OpenBenchmarking.org MFLOPS, More Is Better QuantLib 1.32 Configuration: Multi-Threaded a b 40K 80K 120K 160K 200K 176928.1 170381.3 1. (CXX) g++ options: -O3 -march=native -fPIE -pie
QuantLib Configuration: Single-Threaded OpenBenchmarking.org MFLOPS, More Is Better QuantLib 1.32 Configuration: Single-Threaded a b 600 1200 1800 2400 3000 2634.4 2633.8 1. (CXX) g++ options: -O3 -march=native -fPIE -pie
Quicksilver Input: CTS2 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CTS2 a b 3M 6M 9M 12M 15M 16240000 16310000 1. (CXX) g++ options: -fopenmp -O3 -march=native
Quicksilver Input: CORAL2 P1 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CORAL2 P1 a b 5M 10M 15M 20M 25M 21350000 21280000 1. (CXX) g++ options: -fopenmp -O3 -march=native
Quicksilver Input: CORAL2 P2 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CORAL2 P2 a b 3M 6M 9M 12M 15M 16170000 16190000 1. (CXX) g++ options: -fopenmp -O3 -march=native
rav1e Speed: 1 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 1 a b 0.1913 0.3826 0.5739 0.7652 0.9565 0.85 0.85
rav1e Speed: 5 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 5 a b 0.8091 1.6182 2.4273 3.2364 4.0455 3.584 3.596
rav1e Speed: 6 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 6 a b 1.1005 2.201 3.3015 4.402 5.5025 4.851 4.891
rav1e Speed: 10 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 10 a b 3 6 9 12 15 12.32 12.36
Speedb Test: Random Fill OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Fill a b 80K 160K 240K 320K 400K 369023 367684 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Random Read OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Read a b 70M 140M 210M 280M 350M 303866048 304143127 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Update Random OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Update Random a b 80K 160K 240K 320K 400K 350612 361192 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Sequential Fill OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Sequential Fill a b 80K 160K 240K 320K 400K 371857 369178 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Random Fill Sync OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Fill Sync a b 50K 100K 150K 200K 250K 239469 244535 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Read While Writing OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Read While Writing a b 3M 6M 9M 12M 15M 15411684 15231425 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Read Random Write Random OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Read Random Write Random a b 500K 1000K 1500K 2000K 2500K 2539184 2539687 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b 2 4 6 8 10 6.628 6.750 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b 15 30 45 60 75 67.98 68.52 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b 40 80 120 160 200 190.95 194.49 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b 40 80 120 160 200 187.08 194.59 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b 4 8 12 16 20 17.08 17.47 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b 30 60 90 120 150 131.90 129.18 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a b 110 220 330 440 550 511.85 503.62 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b 130 260 390 520 650 597.06 601.57 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
TensorFlow Device: CPU - Batch Size: 1 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: VGG-16 a b 3 6 9 12 15 9.87 9.87
TensorFlow Device: CPU - Batch Size: 1 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: AlexNet a b 7 14 21 28 35 30.46 30.45
TensorFlow Device: CPU - Batch Size: 16 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: VGG-16 a b 8 16 24 32 40 35.21 35.14
TensorFlow Device: CPU - Batch Size: 16 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: AlexNet a b 70 140 210 280 350 299.15 297.84
TensorFlow Device: CPU - Batch Size: 1 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: GoogLeNet a b 4 8 12 16 20 17 17
TensorFlow Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b 1.3433 2.6866 4.0299 5.3732 6.7165 5.97 5.97
TensorFlow Device: CPU - Batch Size: 16 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: GoogLeNet a b 30 60 90 120 150 155.77 155.78
TensorFlow Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b 12 24 36 48 60 51.06 50.80
Timed FFmpeg Compilation Time To Compile OpenBenchmarking.org Seconds, Fewer Is Better Timed FFmpeg Compilation 6.1 Time To Compile a b 4 8 12 16 20 18.15 18.04
Timed Gem5 Compilation Time To Compile OpenBenchmarking.org Seconds, Fewer Is Better Timed Gem5 Compilation 23.0.1 Time To Compile a b 50 100 150 200 250 211.56 223.06
WebP2 Image Encode Encode Settings: Default OpenBenchmarking.org MP/s, More Is Better WebP2 Image Encode 20220823 Encode Settings: Default a b 2 4 6 8 10 7.44 7.49 1. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl
WebP2 Image Encode Encode Settings: Quality 75, Compression Effort 7 OpenBenchmarking.org MP/s, More Is Better WebP2 Image Encode 20220823 Encode Settings: Quality 75, Compression Effort 7 a b 0.1215 0.243 0.3645 0.486 0.6075 0.54 0.51 1. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl
WebP2 Image Encode Encode Settings: Quality 95, Compression Effort 7 OpenBenchmarking.org MP/s, More Is Better WebP2 Image Encode 20220823 Encode Settings: Quality 95, Compression Effort 7 a b 0.0608 0.1216 0.1824 0.2432 0.304 0.27 0.26 1. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl
WebP2 Image Encode Encode Settings: Quality 100, Compression Effort 5 OpenBenchmarking.org MP/s, More Is Better WebP2 Image Encode 20220823 Encode Settings: Quality 100, Compression Effort 5 a b 3 6 9 12 15 11.63 11.68 1. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl
WebP2 Image Encode Encode Settings: Quality 100, Lossless Compression OpenBenchmarking.org MP/s, More Is Better WebP2 Image Encode 20220823 Encode Settings: Quality 100, Lossless Compression a b 0.0135 0.027 0.0405 0.054 0.0675 0.06 0.06 1. (CXX) g++ options: -msse4.2 -fno-rtti -O3 -ldl
Xmrig Variant: KawPow - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: KawPow - Hash Count: 1M a b 4K 8K 12K 16K 20K 20682.1 20732.7 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: Monero - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: Monero - Hash Count: 1M a b 4K 8K 12K 16K 20K 20714.7 20732.3 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: Wownero - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: Wownero - Hash Count: 1M a b 9K 18K 27K 36K 45K 40330.7 40146.1 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: GhostRider - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: GhostRider - Hash Count: 1M a b 1000 2000 3000 4000 5000 4436.2 4442.9 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: CryptoNight-Heavy - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: CryptoNight-Heavy - Hash Count: 1M a b 4K 8K 12K 16K 20K 20666.7 20071.9 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: CryptoNight-Femto UPX2 - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: CryptoNight-Femto UPX2 - Hash Count: 1M a b 4K 8K 12K 16K 20K 20698.4 20683.0 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Y-Cruncher Pi Digits To Calculate: 1B OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 1B a b 3 6 9 12 15 10.25 10.20
Y-Cruncher Pi Digits To Calculate: 5B OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 5B a b 12 24 36 48 60 53.07 53.15
Y-Cruncher Pi Digits To Calculate: 10B OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 10B a b 30 60 90 120 150 112.54 112.81
Y-Cruncher Pi Digits To Calculate: 500M OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 500M a b 1.1498 2.2996 3.4494 4.5992 5.749 5.110 5.106
Phoronix Test Suite v10.8.5