ddf
AMD EPYC 8534PN 64-Core testing with a AMD Cinnabar (RCB1009C BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2401085-NE-DDF90911740&grw.
WebP2 Image Encode
Encode Settings: Default
WebP2 Image Encode
Encode Settings: Quality 75, Compression Effort 7
WebP2 Image Encode
Encode Settings: Quality 95, Compression Effort 7
Quicksilver
Input: CORAL2 P1
Quicksilver
Input: CORAL2 P2
Quicksilver
Input: CTS2
WebP2 Image Encode
Encode Settings: Quality 100, Compression Effort 5
WebP2 Image Encode
Encode Settings: Quality 100, Lossless Compression
Xmrig
Variant: KawPow - Hash Count: 1M
Xmrig
Variant: Monero - Hash Count: 1M
Xmrig
Variant: Wownero - Hash Count: 1M
Xmrig
Variant: GhostRider - Hash Count: 1M
Xmrig
Variant: CryptoNight-Heavy - Hash Count: 1M
Xmrig
Variant: CryptoNight-Femto UPX2 - Hash Count: 1M
easyWave
Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200
QuantLib
Configuration: Multi-Threaded
QuantLib
Configuration: Single-Threaded
OpenRadioss
Model: Bumper Beam
OpenRadioss
Model: Chrysler Neon 1M
OpenRadioss
Model: Cell Phone Drop Test
OpenRadioss
Model: Bird Strike on Windshield
OpenRadioss
Model: Rubber O-Ring Seal Installation
OpenRadioss
Model: INIVOL and Fluid Structure Interaction Drop Container
easyWave
Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400
TensorFlow
Device: CPU - Batch Size: 1 - Model: VGG-16
easyWave
Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240
TensorFlow
Device: CPU - Batch Size: 1 - Model: AlexNet
TensorFlow
Device: CPU - Batch Size: 16 - Model: VGG-16
TensorFlow
Device: CPU - Batch Size: 16 - Model: AlexNet
TensorFlow
Device: CPU - Batch Size: 1 - Model: GoogLeNet
TensorFlow
Device: CPU - Batch Size: 1 - Model: ResNet-50
TensorFlow
Device: CPU - Batch Size: 16 - Model: GoogLeNet
TensorFlow
Device: CPU - Batch Size: 16 - Model: ResNet-50
LeelaChessZero
Backend: BLAS
LeelaChessZero
Backend: Eigen
CloverLeaf
Input: clover_bm
CloverLeaf
Input: clover_bm64_short
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Y-Cruncher
Pi Digits To Calculate: 500M
Y-Cruncher
Pi Digits To Calculate: 5B
Y-Cruncher
Pi Digits To Calculate: 10B
Y-Cruncher
Pi Digits To Calculate: 1B
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-50
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-152
PyTorch
Device: CPU - Batch Size: 16 - Model: ResNet-50
PyTorch
Device: CPU - Batch Size: 32 - Model: ResNet-50
PyTorch
Device: CPU - Batch Size: 64 - Model: ResNet-50
PyTorch
Device: CPU - Batch Size: 16 - Model: ResNet-152
PyTorch
Device: CPU - Batch Size: 32 - Model: ResNet-152
PyTorch
Device: CPU - Batch Size: 64 - Model: ResNet-152
PyTorch
Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l
PyTorch
Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l
PyTorch
Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l
PyTorch
Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l
Timed FFmpeg Compilation
Time To Compile
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 4K
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 4K
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 4K
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 4K
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 1080p
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 1080p
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 1080p
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 1080p
Blender
Blend File: BMW27 - Compute: CPU-Only
Blender
Blend File: Classroom - Compute: CPU-Only
Blender
Blend File: Fishy Cat - Compute: CPU-Only
Blender
Blend File: Barbershop - Compute: CPU-Only
Blender
Blend File: Pabellon Barcelona - Compute: CPU-Only
FFmpeg
Encoder: libx265 - Scenario: Live
FFmpeg
Encoder: libx265 - Scenario: Upload
FFmpeg
Encoder: libx265 - Scenario: Platform
FFmpeg
Encoder: libx265 - Scenario: Video On Demand
rav1e
Speed: 1
rav1e
Speed: 5
rav1e
Speed: 6
rav1e
Speed: 10
Embree
Binary: Pathtracer - Model: Crown
Embree
Binary: Pathtracer ISPC - Model: Crown
Embree
Binary: Pathtracer - Model: Asian Dragon
Embree
Binary: Pathtracer - Model: Asian Dragon Obj
Embree
Binary: Pathtracer ISPC - Model: Asian Dragon
Embree
Binary: Pathtracer ISPC - Model: Asian Dragon Obj
Timed Gem5 Compilation
Time To Compile
Speedb
Test: Random Fill
Speedb
Test: Random Read
Speedb
Test: Update Random
Speedb
Test: Sequential Fill
Speedb
Test: Random Fill Sync
Speedb
Test: Read While Writing
Speedb
Test: Read Random Write Random
Phoronix Test Suite v10.8.5